
Regularity Lemma 1

Lyubashevsky’s Regularity Lemma

In this blogpost we exposit a result from Lyubashevsky et al. (2013) called the “regularity lemma” for Ring-LWE. Let
𝑚 be an integer with𝑚 ≥ 3. Let 𝐾 be the𝑚-th cyclotomic field. The field 𝐾 can be either represented asℚ[𝑋]/Φ(𝑋)
where Φ(𝑋) is the 𝑚-th cyclotomic polynomial, or as ℚ(𝜁) where 𝜁 is a root of Φ(𝑋). The extension degree of 𝐾 is
𝑛 = 𝜑(𝑚)where𝜑(𝑚) is the Euler totient function. Let𝑅 be the ring of algebraic integers in𝐾. For cyclotomic fields,
it is known that 𝑅 ≅ ℤ[𝜁] where 𝜁 is a root of Φ(𝑋). As such, we use polynomials in ℤ[𝜁] to represent elements of
𝑅. Let 𝑞 be an integer with 𝑞 ≥ 2. We use 𝑅𝑞 to denote the quotient ring 𝑅/𝑞𝑅. We represent elements of 𝑅𝑞 with
polynomials that, when seen as coefficient vectors, have each component within [0, 𝑞 − 1]. Thus 𝑅𝑞 is a finite set of
size 𝑞𝑛.

An informal, simplified statement of the regularity lemma is as follows. Let 𝑙 be a positive integer with 𝑙 < 2𝑛. Let
𝒟 be a probability distribution over 𝑅𝑞. For suitable choices of𝒟, if we sample 𝑎1,⋯ , 𝑎𝑙−1 uniformly from 𝑅𝑞, and
sample 𝑏0, 𝑏1,⋯ , 𝑏𝑙−1 according to𝒟 from 𝑅𝑞, then the distribution of

𝑏0 +
𝑙−1
∑
𝑖=1

𝑎𝑖𝑏𝑖

is close to the uniformdistribution over𝑅𝑞. This lemma is used to prove that the public keys of certain cryptographic
systems are indistinguishable from random. In such systems one typically samples a vector 𝐚 = (𝑎1,⋯ , 𝑎𝑙−1)with
uniform randomness, samples 𝐬 = (𝑠1,⋯ , 𝑠𝑙−1) and 𝑒 according to some predefined distribution𝒟, and publishes
𝐚, ⟨𝐚, 𝐬⟩ + 𝑒 as a public key.

1 Lattices

Definition 1. Let 𝑛 be a positive integer. Let 𝐯1,⋯ , 𝐯𝑛 be linearly independent vectors in ℝ𝑛. The set

𝐿 = {𝑘1𝐯1 +⋯+ 𝑘𝑛𝐯𝑛 | 𝑘1,⋯ , 𝑘𝑛 ∈ ℤ}

is called a lattice. The set {𝐯1,⋯ , 𝐯𝑛} is called a basis of 𝐿.

Example 2. The set of integer vectors ℤ𝑛 forms a lattice, with basis {𝐞1,⋯ , 𝐞𝑛}.

Remark 3. The basis of a lattice is not unique. For example, we can negate the sign of any element in the basis, and
the resulting set is still a basis.

Definition 4. If 𝐿 is a lattice with basis 𝐯1,⋯ , 𝐯𝑛, then we define the determinant of 𝐿, denoted by 𝑑(𝐿), to be

𝑑(𝐿) = det [𝐯1 ⋯ 𝐯𝑛] .

Remark 5. The determinant of a lattice 𝐿 is well-defined up to sign. If 𝐯1,⋯ , 𝐯𝑛 and𝐰1,⋯ ,𝐰𝑛 are two bases for
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𝐿, then we can represent each𝐰𝑖 as

𝐰𝑖 =
𝑛
∑
𝑗=1

𝑘𝑖𝑗𝐯𝑗 , 𝑘𝑖𝑗 ∈ ℤ.

Similarly, we have

𝐯𝑖 =
𝑛
∑
𝑗=1

𝑘′𝑖𝑗𝐰𝑗 , 𝑘′𝑖𝑗 ∈ ℤ.

Now consider the matrices

𝐕 = [𝐯1 ⋯ 𝐯𝑛]
⊤ , 𝐖 = [𝐰1 ⋯ 𝐰𝑛]

⊤ , 𝐀 = (
𝑘11 ⋯ 𝑘1𝑛
⋮ ⋱ ⋮
𝑘𝑛1 ⋯ 𝑘𝑛𝑛

) , 𝐁 = (
𝑘′11 ⋯ 𝑘′1𝑛
⋮ ⋱ ⋮
𝑘′𝑛1 ⋯ 𝑘′𝑛𝑛

) .

We have 𝐖 = 𝐀𝐕 and 𝐕 = 𝐁𝐖, so det𝐖 = det𝐀 ⋅ det𝐕, det𝐕 = det𝐁 ⋅ det𝐖. Thus det𝐀 ⋅ det𝐁 = 1. But
both det𝐀, det𝐁 are integers, since each entry of 𝐀,𝐁 is an integer. Therefore, both det𝐀 = ±1, det𝐁 = ±1, and
det𝐖 = ± det𝐕. □

Definition 6. Let 𝐿 be a lattice of rank 𝑛. The dual lattice of 𝐿, denoted by 𝐿∗, is the set

𝐿∗ = {𝐰 ∈ ℝ𝑛 | ∀𝐯 ∈ 𝐿, ⟨𝐯,𝐰⟩ ∈ ℤ}.

Remark 7. Suppose that 𝐯1,⋯ , 𝐯𝑛 is a basis of 𝐿. To see that the dual lattice of 𝐿 is also a lattice of rank 𝑛, notice
that we can find𝐰1,⋯ ,𝐰𝑛, such that

⟨𝐰𝑖, 𝐯𝑗⟩ = {1 (𝑖 = 𝑗)
0 (𝑖 ≠ 𝑗)

.

Then it is easy to see that𝐰1,⋯ ,𝐰𝑛 is a basis of 𝐿∗. □

Lemma 8. Lattice duality is an involution. For each lattice 𝐿 we have (𝐿∗)∗ = 𝐿.

Proof : Let 𝐯1,⋯ , 𝐯𝑛 be a basis of 𝐿, and𝐰1,⋯ ,𝐰𝑛 be a basis of 𝐿∗ as constructed above. Then it is easy to see that
𝐯𝑖 ∈ (𝐿∗)∗, thus 𝐿 ⊆ (𝐿∗)∗. Now suppose 𝐯 is a vector in (𝐿∗)∗. We can write 𝐯 as 𝐯 = 𝑟1𝐯1 +⋯+ 𝑟𝑛𝐯𝑛 with 𝑟𝑖 ∈ ℝ.
Then we have ⟨𝐯,𝐰𝑖⟩ = 𝑟𝑖. But since𝐰𝑖 ∈ 𝐿∗, we have 𝑟𝑖 ∈ ℤ. Hence 𝐯 ∈ 𝐿. □

Lemma 9. If 𝐿 is a lattice then 𝑑(𝐿) = 1/𝑑(𝐿∗).

Proof : Let 𝐯1,⋯ , 𝐯𝑛 be a basis of 𝐿, and𝐰1,⋯ ,𝐰𝑛 be a basis of 𝐿∗ as constructed in Remark 7. Define the matrices

𝐕 = [𝐯1 ⋯ 𝐯𝑛] , 𝐖 = [𝐰1 ⋯ 𝐰𝑛]
⊤ .

Then we have𝐖𝐕 = 𝐈𝑛. Hence 𝑑(𝐿) = det𝐕 = 1/ det𝐖 = 1/𝑑(𝐿∗). □

Lemma 10. Let 𝐿, 𝐿′ be two lattices of rank 𝑛 with 𝐿′ ⊆ 𝐿. Define an equivalence relation 𝐯 ↔ 𝐯′ on 𝐿 determined
by

𝐯 ↔ 𝐯′ ≡ 𝐯 − 𝐯′ ∈ 𝐿′.

Then the number of equivalence classes of this relation is exactly |𝑑(𝐿′)/𝑑(𝐿)|. Furthermore, for each 𝐯 ∈ 𝐿, we
have |𝑑(𝐿′)/𝑑(𝐿)| 𝐯 ∈ 𝐿′.

Proof : Without loss of generality, we may assume 𝐿 = ℤ𝑛. Let 𝐯1,⋯ , 𝐯𝑛 be a basis of 𝐿′. Let 𝐕 = [𝐯1 ⋯ 𝐯𝑛]. For
any 𝐯 ∈ ℤ𝑛, 𝐯 ∈ 𝐿′ if and only if 𝐕−1𝐯 ∈ ℤ𝑛.
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Now recall that every matrix in ℤ𝑛×𝑛 has a Smith normal form. There exists matrices 𝐒,𝐀, 𝐓 with the following
properties:

1. 𝐒,𝐀, 𝐓 ∈ ℤ𝑛×𝑛;

2. 𝐒−1, 𝐓−1 ∈ ℤ𝑛×𝑛;

3. 𝐕 = 𝐒𝐀𝐓;

4. Matrix 𝐀 is diagonal.

Since the matrices 𝐒, 𝐓 and their inverses all contain only integer entires, we must have det 𝐒 = ±1, det𝐓 = ±1.
Let 𝑎1,⋯ , 𝑎𝑛 be the diagonal entries of 𝐀. Then we have | det𝐕| = |𝑎1⋯𝑎𝑛|. Now 𝐕−1 = 𝐓−1𝐀−1𝐒−1. For a given
vector 𝐯 ∈ ℤ𝑛, let𝐰 = 𝐒−1𝐯. Then it is easy to see that 𝐕−1𝐯 ∈ ℤ𝑛 if and only if each 𝑤𝑖 is a multiple of 𝑎𝑖. Hence,
𝐯 ↔ 𝐯′ iff 𝑤1 = 𝑤′

1 mod 𝑎1, 𝑤2 = 𝑤′
2 mod 𝑎2, etc. From this it is easy to see that the number of equivalence classes

is at most | det𝐕|. To see that it is exactly | det𝐕|, note that for each𝐰 ∈ ℤ𝑛 we have𝐰 = 𝐒−1(𝐒𝐰), and so every
equivalence class has at least one member.

For any given 𝐯 ∈ ℤ𝑛, every component of |𝑑(𝐿′)/𝑑(𝐿)| 𝐯 is a multiple of |𝑑(𝐿′)/𝑑(𝐿)|, hence a multiple of 𝑎1,⋯ , 𝑎𝑛.
Hence 𝐕−1(|𝑑(𝐿′)/𝑑(𝐿)| 𝐯) ∈ ℤ𝑛 and |𝑑(𝐿′)/𝑑(𝐿)| 𝐯 ∈ 𝐿′. □

Lemma 11. If 𝐿1, 𝐿2 are two lattices such that 𝐿1 ⊆ 𝐿2, then 𝐿∗2 ⊆ 𝐿∗1 .

Proof : If𝐰 is a vector such that ⟨𝐰, 𝐯⟩ ∈ ℤ for any 𝐯 ∈ 𝐿2, then also ⟨𝐰, 𝐯⟩ ∈ ℤ for any 𝐯 ∈ 𝐿1. □

Lemma 12 (Minkowski’s Theorem). Let 𝐿 be a lattice of rank 𝑛. Let 𝑉 be a centrally symmetric convex subset of
ℝ𝑛. If vol(𝑉) > 2𝑛 ⋅ |𝑑(𝐿)| then 𝑉 contains at least one non-zero vector in 𝐿.

Proof : Jarvis (2014, Theorem 7.8, p. 152). □

2 Harmonic Analysis

Let 𝑓(𝐱) be a continuous function ℝ𝑛 ↦ ℂ, such that ∫ℝ𝑛 |𝑓(𝐱)| d𝐱 converges. Let 𝑆 be a countable subset of ℝ𝑛

such that∑𝑆 |𝑓(𝐱)| also converges. We can define a generalized function 𝜇(𝐱) on ℝ𝑛 as

𝜇(𝐱) = ∑
𝐱0∈𝑆

𝑓(𝐱0) 𝛿(𝐱 − 𝐱0),

where 𝛿(𝐱) is Dirac’s delta function.

Definition 13 (Fourier transform for continuous functions over ℝ𝑛). The Fourier transform of 𝑓(𝐱) is a function
𝑓(𝐲) defined as

𝑓(𝐲) = ∫
ℝ𝑛

𝑒2𝜋𝑖⟨𝐱,𝐲⟩ 𝑓(𝐱) d𝐱.

Definition 14 (Fourier transform for discrete sums over 𝑆). The Fourier transform of 𝜇(𝐱) is a function 𝜇(𝐲) ∶
ℝ𝑛 ↦ ℂ, defined as

𝜇(𝐲) = ∑
𝐱∈𝑆

𝑒2𝜋𝑖⟨𝐱,𝐲⟩ 𝑓(𝐱).

In this section we follow Grafakos (2014) to establish Poisson’s summation formula:



Regularity Lemma 4

Theorem 15. If there exists 𝐶, 𝛿 ∈ ℝ with 𝐶 > 0, 𝛿 > 0, and

∀𝐱 ∈ ℝ𝑛, |𝑓(𝐱)| ≤ 𝐶(1 + |𝑥|)−𝑛−𝛿,

∑
𝐦∈ℤ𝑛

|𝑓(𝐲 +𝐦)| < ∞,

then for every 𝐮, 𝐲 ∈ ℝ𝑛 we have

∑
𝐱∈ℤ𝑛+𝐮

𝑒2𝜋𝑖⟨𝐱,𝐲⟩ 𝑓(𝐱) = ∑
𝐳∈ℤ𝑛

𝑒−2𝜋𝑖⟨𝐳,𝐮⟩ 𝑓(𝐲 + 𝐳).

2.1 Fourier Series of Periodic Functions

Let us define
𝐹(𝐮) = ∑

𝐱∈ℤ𝑛+𝐮
𝑒2𝜋𝑖⟨𝐱,𝐲⟩ 𝑓(𝐱).

We have 𝐹(𝐮) = 𝜇(𝐲) with 𝑆 = ℤ𝑛 + 𝐮. Now 𝐹(𝐮) is periodic over ℤ𝑛. If 𝐮 − 𝐮′ ∈ ℤ𝑛 then ℤ𝑛 + 𝐮 = ℤ𝑛 + 𝐮′.

We write 𝕋𝑛 for the 𝑛-torus ℝ𝑛/ℤ𝑛. Thus a function 𝑓(𝐱) is defined on 𝕋𝑛 if it is defined on ℝ𝑛 and periodic over
ℤ𝑛. We represent each element in 𝕋𝑛 with a point in the cube [−1/2, 1/2]𝑛.

Definition 16 (Fourier series for functions periodic over ℤ𝑛). The Fourier series of 𝐹(𝐮) is a function 𝐹(𝐦) ∶ ℤ𝑛 ↦
ℂ, defined as

𝐹(𝐦) = ∫
[−1/2,1/2]𝑛

𝑒2𝜋𝑖⟨𝐮,𝐦⟩ 𝐹(𝐮) d𝐮.

In this subsection we prove that:

Theorem 17. If 𝐹(𝐮), 𝐺(𝐮) are two continuous functions 𝕋𝑛 ↦ ℂ, and 𝐹(𝐦) = 𝐺(𝐦) for every 𝐦 ∈ ℤ𝑛, then
𝐹(𝐮) = 𝐺(𝐮) for every 𝐮 ∈ 𝕋𝑛.

Definition 18. An approximate identity is a sequence of continuous functions 𝑘1, 𝑘2,⋯ ∶ 𝕋𝑛 ↦ ℝ such that:

1. There exists a constant 𝑐 > 0 such that ∫𝕋𝑛 |𝑘𝑛(𝐱)| d𝐱 ≤ 𝑐 for every 𝑘𝑛 in the sequence;

2. For every 𝑘𝑛 in sequence we have∫𝕋𝑛 𝑘𝑛(𝐱) d𝐱 = 1;

3. For every 0 < 𝛿 < 1/2, let ℬ(𝛿) be the open ball

ℬ(𝛿) = {𝐱 ∈ 𝕋𝑛 | ||𝐱|| < 𝛿},

and let 𝒞(𝛿) = 𝕋𝑛 ⧵ ℬ(𝛿), then ∫𝒞(𝛿) |𝑘𝑛(𝐱)| d𝐱 → 0 as 𝑛 → ∞.

Definition 19. Let 𝑓(𝐱), 𝑘(𝐱) be continuous functions 𝕋𝑛 ↦ ℂ. Then the convolution of 𝑓 and 𝑘, denoted by (𝑓 ∗ 𝑘),
is defined as

(𝑓 ∗ 𝑘)(𝐱) = ∫
𝕋𝑛
𝑓(𝐱 − 𝐲)𝑘(𝐲) d𝐲.

Definition 20. The Fejér kernel 𝐹𝑛𝑁(𝑥1,⋯ , 𝑥𝑛) is defined as

𝐹𝑛𝑁(𝑥1,⋯ , 𝑥𝑛) = ∑
𝐦∈ℤ𝑛
|𝑚𝑗≤𝑁|

(1 − |𝑚1|
𝑁 + 1)⋯(1 − |𝑚1|

𝑁 + 1) 𝑒
2𝜋𝑖⟨𝐦,𝐱⟩.
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Lemma 21. The Fejér kernel 𝐹𝑛𝑁 satisfies

𝐹𝑛𝑁(𝑥1,⋯ , 𝑥𝑛) =
1

(𝑁 + 1)𝑛
𝑛
∏
𝑗=1

(
sin(𝜋(𝑁 + 1)𝑥𝑗)

sin(𝜋𝑥𝑗)
)
2

.

Proof : Notice that

𝐹𝑛𝑁(𝑥1,⋯ , 𝑥𝑛) =
𝑛
∏
𝑗=1

𝐹1𝑁(𝑥𝑗).

So it is sufficient to prove the lemma for the case 𝑛 = 1. This sum is easy to do and I shall omit the details. □

Lemma 22. The Fejér kernels 𝐹𝑛1 , 𝐹𝑛2 ,⋯ constitute an approximate identity.

Proof : By Lemma 21 we have 𝐹𝑛𝑁(𝐱) ≥ 0. Thus

∫
𝕋𝑛
|𝐹𝑛𝑁(𝐱)| d𝐱 = ∫

𝕋𝑛
𝐹𝑛𝑁(𝐱) d𝐱.

Now notice that

∫
𝕋𝑛
𝑒2𝜋𝑖⟨𝐦,𝐱⟩ =

𝑛
∏
𝑗=1

∫
1/2

−1/2
𝑒2𝜋𝑖𝑚𝑗𝑥𝑗 d𝑥𝑗 .

If𝑚𝑗 ∈ ℤ ⧵ {0} then 𝑒2𝜋𝑖𝑚𝑗𝑥𝑗 integrates to 0. Hence the only term that does not vanish in ∫𝕋𝑛 𝐹𝑛𝑁(𝐱) d𝐱 is the term
with𝐦 = 𝟎. We have

∫
𝕋𝑛
|𝐹𝑛𝑁(𝐱)| d𝐱 = ∫

𝕋𝑛
𝐹𝑛𝑁(𝐱) d𝐱 = 1.

Therefore properties 1 and 2 in Definition 18 are satisfied.

To prove property 3, first notice that | sin(𝜋(𝑁 + 1)𝑥)| ≤ 𝜋(𝑁 + 1)|𝑥| and | sin(𝜋(𝑁 + 1)𝑥)| ≤ 1. Therefore

𝐹1𝑁(𝑥) ≤
1

𝑁 + 1 min (𝜋(𝑁 + 1)|𝑥|
| sin(𝜋𝑥)| ,

1
| sin(𝜋𝑥)|)

2
.

Now we claim that, when |𝑥| ≤ 1/2,
1 ≤ 𝜋|𝑥|/| sin(𝜋𝑥)| ≤ 𝜋/2.

By symmetry it is sufficient to prove the case 𝑥 ≥ 0. The first inequality is obvious. To prove the second inequality,
define 𝑔(𝑥) = 𝜋𝑥/ sin(𝜋𝑥), then

𝑔′(𝑥) = sin(𝑥) − 𝑥 cos(𝑥)
sin2(𝑥)

.

Define ℎ(𝑥) = sin(𝑥) − 𝑥 cos(𝑥), then

ℎ′(𝑥) = 𝑥 sin(𝑥) ≥ 0 (|𝑥| ≤ 𝜋).

Therefore ℎ(𝑥) ≥ 0 and 𝑔′(𝑥) ≥ 0 when 0 ≤ 𝑥 ≤ 1/2. Hence 𝑔(𝑥) ≤ 𝑔(1/2) = 𝜋/2 when 0 ≤ 𝑥 ≤ 1/2.

Now we have

𝐹1𝑁(𝑥) ≤
1

𝑁 + 1 (
𝜋|𝑥|

| sin(𝜋𝑥)|)
2
min (𝑁 + 1, 1

𝜋|𝑥|)
2
≤ 1
𝑁 + 1 ⋅

𝜋2
4 min (𝑁 + 1, 1

𝜋|𝑥|)
2
.
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Thus for 𝛿 > 0 we have

∫
𝛿≤|𝑥|≤1/2

𝐹1𝑁(𝑥) d𝑥 ≤
1

𝑁 + 1 ⋅
𝜋2
4 ∫

𝛿≤|𝑥|≤1/2

d𝐱
|𝜋𝑥|2 ≤

1
4𝛿2(𝑁 + 1) .

As 𝑁 increases, the integral approaches 0.

For general 𝐹𝑛𝑁 , given any 𝐱 ∈ [−1/2, 1/2]𝑛 with ||𝐱|| ≥ 𝛿, at least one 𝑥𝑗 satisfies |𝑥𝑗| ≥ 𝛿/√𝑛. Therefore

∫
𝒞(𝛿)

𝐹𝑛𝑁(𝐱) d𝐱 ≤
𝑛
∑
𝑗=1

[(∫
𝛿
√𝑛

≤|𝑥𝑗 |≤1/2
𝐹1𝑁(𝑥𝑗) d𝑥𝑗)∏

𝑘≠𝑗
∫

1/2

−1/2
𝐹1𝑁(𝑥𝑘) d𝑥𝑘] ≤

𝑛
4(𝛿/√𝑛)2(𝑁 + 1)

.

The integral also approaches 0 as 𝑁 increases. □

Lemma 23. Let 𝑘1, 𝑘2,⋯ be an approximate identity. Then for every continuous function 𝑓(𝐱) ∶ 𝕋𝑛 ↦ ℂ, we have

∫
𝕋𝑛
|(𝑘𝑁 ∗ 𝑓)(𝐱) − 𝑓(𝐱)| d𝐱 → 0 as 𝑁 → ∞.

Proof : Since [−1/2, 1/2]𝑛 is a compact set, 𝑓(𝐱) is uniformly continuous. For every 𝜀 > 0, we can find 𝛿 < 1/2 such
that

∀𝐱, 𝐱′ ∈ 𝕋𝑛, ||𝐱 − 𝐱′|| < 𝛿 ⇒ |𝑓(𝐱) − 𝑓(𝐱′)| < 𝜀.

Also, |𝑓(𝐱)| has a maximum value𝑀. Choose a sufficiently large 𝑁, such that

∫
𝒞(𝛿)

|𝑘𝑁(𝐱)| d𝐱 < min(𝜀/𝑀, 𝜀).

Then we have

∫
𝕋𝑛
|(𝑘𝑁 ∗ 𝑓)(𝐱) − 𝑓(𝐱)| d𝐱 = ∫

𝕋𝑛

|||(∫𝕋𝑛
𝑓(𝐱 − 𝐲)𝑘𝑁(𝐲) d𝐲) − 𝑓(𝐱)||| d𝐱

= ∫
𝕋𝑛

|
|
|
(∫

ℬ(𝛿)
𝑓(𝐱 − 𝐲)𝑘𝑁(𝐲) d𝐲) + (∫

𝒞(𝛿)
𝑓(𝐱 − 𝐲)𝑘𝑁(𝐲) d𝐲) − 𝑓(𝐱)

|
|
|
d𝐱

≤ ∫
𝕋𝑛

|
|
|
(∫

ℬ(𝛿)
𝑓(𝐱 − 𝐲)𝑘𝑁(𝐲) d𝐲) − 𝑓(𝐱)

|
|
|
+
|
|
|
∫
𝒞(𝛿)

𝑓(𝐱 − 𝐲)𝑘𝑁(𝐲) d𝐲
|
|
|
d𝐱

≤ 𝜀 +∫
𝕋𝑛

|
|
|
(∫

ℬ(𝛿)
𝑓(𝐱 − 𝐲)𝑘𝑁(𝐲) d𝐲) − 𝑓(𝐱)

|
|
|
d𝐱

= 𝜀 +∫
𝕋𝑛

|
|
|
(∫

ℬ(𝛿)
𝑓(𝐱)𝑘𝑁(𝐲) d𝐲) − 𝑓(𝐱) +∫

ℬ(𝛿)
(𝑓(𝐱 − 𝐲) − 𝑓(𝐱))𝑘𝑁(𝐲) d𝐲

|
|
|
d𝐱

≤ 𝜀 +∫
𝕋𝑛

|
|
|
(∫

ℬ(𝛿)
𝑓(𝐱)𝑘𝑁(𝐲) d𝐲) − 𝑓(𝐱)

|
|
|
+
|
|
|
∫
ℬ(𝛿)

(𝑓(𝐱 − 𝐲) − 𝑓(𝐱))𝑘𝑁(𝐲) d𝐲
|
|
|
d𝐱.

Because ∫𝕋𝑛 𝑘𝑁(𝐲) d𝐲 = 1, we have

∫
ℬ(𝛿)

𝑘𝑁(𝐲) d𝐲 = 1 −∫
𝒞(𝛿)

𝑘𝑁(𝐲) d𝐲.
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But | ∫𝒞(𝛿) 𝑘𝑁(𝐲) d𝐲| ≤ ∫𝒞(𝛿) |𝑘𝑁(𝐲)| d𝐲 ≤ 𝜀, so

1 − 𝜀 ≤ ∫
ℬ(𝛿)

𝑘𝑁(𝐲) d𝐲 ≤ 1 + 𝜀.

We have
|
|
|
(∫

ℬ(𝛿)
𝑓(𝐱)𝑘𝑁(𝐲) d𝐲) − 𝑓(𝐱)

|
|
|
≤ 𝜀 ⋅ |𝑓(𝐱)| ≤ 𝜀𝑀.

Similarly
|
|
|
∫
ℬ(𝛿)

(𝑓(𝐱 − 𝐲) − 𝑓(𝐱))𝑘𝑁(𝐲) d𝐲
|
|
|
≤ 𝜀 ⋅ (𝑐 − 𝜀),

where 𝑐 is the constant in requirement 1 of Definition 18. Together we get

∫
𝕋𝑛
|(𝑘𝑁 ∗ 𝑓)(𝐱) − 𝑓(𝐱)| d𝐱 ≤ 𝜀 ⋅ (1 + 𝑐 + 𝑀 − 𝜀).

As 𝜀 → 0, we see that ∫𝕋𝑛 |(𝑘𝑁 ∗ 𝑓)(𝐱) − 𝑓(𝐱)| d𝐱 → 0. □

Lemma 24. Let 𝐹(𝐱) be a continuous function on 𝕋𝑛. For each 𝐱 ∈ 𝕋𝑛 we have

(𝐹𝑛𝑁 ∗ 𝐹)(𝐱) = ∑
𝐦∈ℤ𝑛
|𝑚𝑗 |≤𝑁

(1 − |𝑚1|
𝑁 + 1)⋯(1 − |𝑚1|

𝑁 + 1) 𝐹(−𝐦) 𝑒2𝜋𝑖⟨𝐦,𝐱⟩.

Proof :

(𝐹𝑛𝑁 ∗ 𝐹)(𝐱) = ∫
𝕋𝑛

∑
𝐦∈ℤ𝑛
|𝑚𝑗 |≤𝑁

(1 − |𝑚1|
𝑁 + 1)⋯(1 − |𝑚1|

𝑁 + 1) 𝑒
2𝜋𝑖⟨𝐦,𝐲⟩ 𝑓(𝐱 − 𝐲) d𝐲

= ∑
𝐦∈ℤ𝑛
|𝑚𝑗 |≤𝑁

(1 − |𝑚1|
𝑁 + 1)⋯(1 − |𝑚1|

𝑁 + 1) ∫𝕋𝑛
𝑒2𝜋𝑖⟨𝐦,𝐲⟩ 𝑓(𝐱 − 𝐲) d𝐲

= ∑
𝐦∈ℤ𝑛
|𝑚𝑗 |≤𝑁

(1 − |𝑚1|
𝑁 + 1)⋯(1 − |𝑚1|

𝑁 + 1) ∫𝕋𝑛
𝑒2𝜋𝑖⟨𝐦,𝐱−𝐲⟩ 𝑓(𝐲) d𝐲

= ∑
𝐦∈ℤ𝑛
|𝑚𝑗 |≤𝑁

(1 − |𝑚1|
𝑁 + 1)⋯(1 − |𝑚1|

𝑁 + 1) 𝑒
2𝜋𝑖⟨𝐦,𝐱⟩∫

𝕋𝑛
𝑒2𝜋𝑖⟨−𝐦,𝐲⟩ 𝑓(𝐲) d𝐲

= ∑
𝐦∈ℤ𝑛
|𝑚𝑗 |≤𝑁

(1 − |𝑚1|
𝑁 + 1)⋯(1 − |𝑚1|

𝑁 + 1) 𝐹(−𝐦) 𝑒2𝜋𝑖⟨𝐦,𝐱⟩.

□

Proof of Theorem 17: Define 𝐻(𝐱) = 𝐹(𝐱) − 𝐺(𝐱). Then 𝐻(𝐦) = 𝐹(𝐦) − 𝐺(𝐦) = 0. Hence (𝐹𝑛𝑁 ∗ 𝐻)(𝐱) = 0 for
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every 𝐱 ∈ 𝕋𝑛. By Lemma 23 we have

∫
𝕋𝑛
|(𝐹𝑛𝑁 ∗ 𝐻)(𝐱) − 𝐻(𝐱)| d𝐱 → 0.

We conclude that 𝐻(𝐱) = 0, thus 𝐹(𝐱) = 𝐺(𝐱). □

We also get the following corollary:

Theorem 25 (Fourier inversion). If 𝐹(𝐱) is a continuous function 𝕋𝑛 ↦ ℂ, and

∑
𝐦∈ℤ𝑛

|𝐹(𝐦)| < ∞,

then we have
𝐹(𝐱) = ∑

𝐦∈ℤ𝑛
𝐹(𝐦) 𝑒−2𝜋𝑖⟨𝐦,𝐱⟩.

Proof : We use 𝐺(𝐱) to denote the RHS. We have

𝐺(𝐦) = ∫
𝕋𝑛

∑
𝐦′∈ℤ𝑛

𝐹(𝐦′) 𝑒2𝜋𝑖⟨𝐦−𝐦′,𝐱⟩ d𝐱

= ∑
𝐦′∈ℤ𝑛

[𝐹(𝐦′)∫
𝕋𝑛
𝑒2𝜋𝑖⟨𝐦−𝐦′,𝐱⟩ d𝐱] .

If𝐦 ≠ 𝐦′ then ∫𝕋𝑛 𝑒2𝜋𝑖⟨𝐦−𝐦′,𝐱⟩ d𝐱 = 0. Hence 𝐺(𝐦) = 𝐹(𝐦), and we may conclude 𝐹(𝐱) = 𝐺(𝐱). □

2.2 Poisson’s Summation Formula

We now return to the function 𝐹(𝐮) = ∑𝐱∈ℤ𝑛+𝐮 𝑒2𝜋𝑖⟨𝐱,𝐲⟩ 𝑓(𝐱).

Proof of Theorem 15: We have

𝐹(𝐦) = ∫
𝕋𝑛
𝑒2𝜋𝑖⟨𝐦,𝐮⟩ ( ∑

𝐱∈ℤ𝑛+𝐮
𝑒2𝜋𝑖⟨𝐱,𝐲⟩ 𝑓(𝐱)) d𝐮

= ∫
𝕋𝑛
𝑒2𝜋𝑖⟨𝐦,𝐮⟩ ( ∑

𝐱∈ℤ𝑛
𝑒2𝜋𝑖⟨𝐱+𝐮,𝐲⟩ 𝑓(𝐱 + 𝐮)) d𝐮

= ∑
𝐱∈ℤ𝑛

∫
𝕋𝑛
𝑒2𝜋𝑖⟨𝐦,𝐮⟩ 𝑒2𝜋𝑖⟨𝐱+𝐮,𝐲⟩ 𝑓(𝐱 + 𝐮) d𝐮 (Weierstrass M-test)

= ∑
𝐱∈ℤ𝑛

∫
𝕋𝑛
𝑒2𝜋𝑖⟨𝐦,(𝐱+𝐮)−𝐱⟩ 𝑒2𝜋𝑖⟨𝐱+𝐮,𝐲⟩ 𝑓(𝐱 + 𝐮) d𝐮

= ∑
𝐱∈ℤ𝑛

∫
𝕋𝑛
𝑒2𝜋𝑖⟨𝐦,𝐱+𝐮⟩ 𝑒2𝜋𝑖⟨𝐱+𝐮,𝐲⟩ 𝑓(𝐱 + 𝐮) d𝐮 (𝑒2𝜋𝑖⟨𝐦,𝐱⟩ = 1)

= ∑
𝐱∈ℤ𝑛

∫
𝕋𝑛
𝑒2𝜋𝑖⟨𝐦+𝐲,𝐱+𝐮⟩ 𝑓(𝐱 + 𝐮) d𝐮

= ∫
ℝ𝑛

𝑒2𝜋𝑖⟨𝐦+𝐲,𝐱⟩ 𝑓(𝐱) d𝐱
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= 𝑓(𝐲 +𝐦).

By assumption we have∑𝐦∈ℤ𝑛 |𝐹(𝐦)| < ∞. By Theorem 25, we get

𝐹(𝐮) = ∑
𝐦∈ℤ𝑛

𝐹(𝐦) 𝑒2𝜋𝑖⟨𝐦,𝐮⟩ = ∑
𝐳∈ℤ𝑛

𝑒−2𝜋𝑖⟨𝐳,𝐮⟩ 𝑓(𝐲 + 𝐳).

□

2.3 General Lattices

Suppose that we want to sum not over ℤ𝑛 + 𝐮 but over 𝐿 + 𝐮 where 𝐿may be any lattice of rank 𝑛. Let 𝐯1,⋯ , 𝐯𝑛
be a basis of 𝐿. Let 𝐋 = [𝐯1 ⋯ 𝐯𝑛]. Define

𝑔(𝐱) = 𝑓(𝐋𝐱),

so that we want to compute∑𝐱∈ℤ𝑛+𝐋−1𝐮 𝑔(𝐱). The Fourier transform of 𝑔(𝐱) is

̂𝑔(𝐲) = ∫
ℝ𝑛

𝑒2𝜋𝑖⟨𝐱,𝐲⟩ 𝑔(𝐱) d𝐱

= ∫
ℝ𝑛

𝑒2𝜋𝑖⟨𝐱,𝐲⟩ 𝑓(𝐋𝐱) d𝐱

= 1
det𝐋 ∫

ℝ𝑛
𝑒2𝜋𝑖⟨𝐋−1𝐳,𝐲⟩ 𝑓(𝐳) d𝐳 (𝐱 = 𝐋−1𝐳)

= 1
det𝐋 ∫

ℝ𝑛
𝑒2𝜋𝑖⟨𝐳,𝐋−⊤𝐲⟩ 𝑓(𝐳) d𝐳

= 𝑓(𝐋−⊤𝐲)
det𝐋 .

Hence, by Theorem 15 we get

∑
𝐱∈𝐿+𝐮

𝑒2𝜋𝑖⟨𝐱,𝐲⟩ 𝑓(𝐱) = ∑
𝐱∈ℤ𝑛+𝐋−1𝐮

𝑒2𝜋𝑖⟨𝐋𝐱,𝐲⟩ 𝑔(𝐱)

= ∑
𝐱∈ℤ𝑛+𝐋−1𝐮

𝑒2𝜋𝑖⟨𝐱,𝐋⊤𝐲⟩ 𝑔(𝐱)

= ∑
𝐳∈ℤ𝑛

𝑒2𝜋𝑖⟨𝐳,𝐋−1𝐮⟩ ̂𝑔(𝐋⊤𝐲 + 𝐳)

= 1
det𝐋 ∑

𝐳∈ℤ𝑛
𝑒2𝜋𝑖⟨𝐋−⊤𝐳,𝐮⟩ 𝑓(𝐋−⊤(𝐋⊤𝐲 + 𝐳))

= 1
det𝐋 ∑

𝐋⊤𝐳∈ℤ𝑛
𝑒2𝜋𝑖⟨𝐳,𝐮⟩ 𝑓(𝐲 + 𝐳)

It is not hard to see that the vectors 𝐳 ∈ ℝ𝑛 satisfying 𝐋⊤𝐳 ∈ ℤ𝑛 are precisely the vectors in 𝐿∗. Therefore

∑
𝐱∈𝐿+𝐮

𝑒2𝜋𝑖⟨𝐱,𝐲⟩ 𝑓(𝐱) = 1
𝑑(𝐿) ∑

𝐳∈𝐿∗
𝑒2𝜋𝑖⟨𝐳,𝐮⟩ 𝑓(𝐲 + 𝐳).
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2.4 Positive-definite Functions

We additionally need the following result:

Definition 26. A continuous function 𝑓(𝐱) ∶ ℝ𝑛 ↦ ℂ is called positive-definite, if 𝑓(𝐱) = 𝑓(−𝐱), and for every
𝜁1,⋯ , 𝜁𝑘 ∈ ℂ and every 𝐱1,⋯ , 𝐱𝑘 ∈ ℝ𝑛 we have

∑
1≤𝑖,𝑗≤𝑘

𝜁𝑖𝜁𝑗 𝑓(𝐱𝑖 − 𝐱𝑗) ≥ 0.

Theorem 27. If 𝑓(𝐱) ∈ ℝ and 𝑓(𝐱) ≥ 0 for every 𝐱 ∈ ℝ𝑛, then 𝑓(𝐲) is a positive-definite function.

Proof : The Fourier transform of any function 𝑓(𝐱) satisfies 𝑓(−𝐱) = 𝑓(𝐱). For any 𝐱, 𝐲1,⋯ , 𝐲𝑘 ∈ ℝ𝑛 and any
𝜁1,⋯ , 𝜁𝑘 ∈ ℂ, define 𝑐𝑝 = 𝜁𝑝 𝑒2𝜋𝑖⟨𝐱,𝐲𝑝⟩, and we have

∑
1≤𝑝,𝑞≤𝑘

𝜁𝑝𝜁𝑞 𝑒2𝜋𝑖⟨𝐱,𝐲𝑝−𝐲𝑞⟩ = ∑
1≤𝑝,𝑞≤𝑘

𝑐𝑝𝑐𝑞 = ( ∑
1≤𝑝≤𝑘

𝑐𝑝)( ∑
1≤𝑝≤𝑘

𝑐𝑝) ≥ 0.

Hence

∑
1≤𝑝,𝑞≤𝑘

𝜁𝑝𝜁𝑞 𝑓(𝐲𝑖 − 𝐲𝑗) = ∑
1≤𝑝,𝑞≤𝑘

𝜁𝑝𝜁𝑞∫
ℝ𝑛

𝑒2𝜋𝑖⟨𝐱,𝐲𝑝−𝐲𝑞⟩ 𝑓(𝐱) d𝐱

= ∫
ℝ𝑛

𝑓(𝐱) ⋅ ( ∑
1≤𝑝,𝑞≤𝑘

𝜁𝑝𝜁𝑞 𝑒2𝜋𝑖⟨𝐱,𝐲𝑝−𝐲𝑞⟩) d𝐱

≥ 0.

□

3 A Lemma of Banaszczyk

Let 𝚺 be a symmetric positive definite matrix in ℝ𝑛×𝑛. The Gaussian distribution 𝒟 on ℝ𝑛 with covariance 𝚺 is a
continuous distribution with density

𝒟(𝐱) =
exp (− 1

2
𝐱⊤𝚺−1𝐱)

(2𝜋)𝑛/2 ⋅ det𝚺 .

If 𝐿 is a lattice on ℝ𝑛 then 𝐿 is a discrete set, so we cannot impose the continuous Gaussian distribution onto 𝐿.
Instead, Micciancio and Regev (2004) suggest to use the discrete Gaussian measure

𝜌𝚺(𝐱) =
exp(−𝐱⊤𝚺−1𝐱)

∑𝐱∈𝐿 exp(−𝐱⊤𝚺−1𝐱)
,

from which they derived elegant security properties. In this section we prove a lemma from Banaszczyk (1993),
which sets the foundation for the analysis of discrete Gaussian distributions.
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3.1 Fourier Transform of Gaussian Functions

Lemma 28. For any 𝑎 > 0 we have

∫
∞

−∞
𝑒−𝑎𝑥2 = √𝜋/𝑎.

Proof : Simon (2015, Theorem 4.11.11, p. 286). □

Lemma 29. For any 𝑎 > 0, the Fourier transform of 𝑓(𝑥) = 𝑒−𝑎𝑥2 is

𝑓(𝑦) = √𝜋/𝑎 𝑒−𝜋2𝑦2/𝑎.

Proof :

𝑓(𝑦) = ∫
∞

−∞
𝑒−𝑎𝑥2 𝑒2𝜋𝑖𝑥𝑦 d𝑥

= ∫
∞

−∞
𝑒−𝑎𝑥2 [cos(2𝜋𝑥𝑦) + 𝑖 sin(2𝜋𝑥𝑦)] d𝑥

= ∫
∞

−∞
𝑒−𝑎𝑥2 cos(2𝜋𝑥𝑦) d𝑥

= ∫
∞

−∞
[𝑒−𝑎𝑥2

∞
∑
𝑘=0

(−1)𝑘(2𝜋𝑥𝑦)2𝑘
(2𝑘)! ] d𝑥

=
∞
∑
𝑘=0

[(−4𝜋
2𝑦2)𝑘

(2𝑘)! ∫
∞

−∞
𝑒−𝑎𝑥2𝑥2𝑘 d𝑥] .

Define 𝑓𝑘(𝑥) = 𝑒−𝑎𝑥2 𝑥2𝑘. Integrating by parts gives us

∫𝑓𝑛(𝑥) d𝑥 = 𝑒−𝑎𝑥2 𝑥2𝑘+1 −∫𝑥 ⋅ 𝑒−𝑎𝑥2 (2𝑘 𝑥2𝑘−1 − 2𝑎𝑥2𝑘+1) d𝑥

= 𝑒−𝑎𝑥2 𝑥2𝑘+1 − 2𝑛∫𝑓𝑘(𝑥) d𝑥 + 2𝑎∫𝑓𝑘+1(𝑥) d𝑥.

As 𝑥 → ±∞ we have 𝑒−𝑎𝑥2 𝑥2𝑘+1 → 0. Therefore

∫
∞

−∞
𝑓𝑘+1(𝑥) d𝑥 =

2𝑘 + 1
2𝑎 ∫

∞

−∞
𝑓𝑘(𝑥) d𝑥.

We conclude that

∫
∞

−∞
𝑓𝑘(𝑥) d𝑥 =

(2𝑘 − 1)!!
(2𝑎)𝑘

√𝜋/𝑎.

Now we have

𝑓(𝑦) =
∞
∑
𝑘=0

[(−4𝜋
2𝑦2)𝑘

(2𝑘)! ∫
∞

−∞
𝑒−𝑎𝑥2𝑥2𝑘 d𝑥]

=
∞
∑
𝑘=0

(−4𝜋2𝑦2)𝑘
(2𝑘)! ⋅ (2𝑘 − 1)!!

(2𝑎)𝑘
√𝜋/𝑎
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= √𝜋/𝑎
∞
∑
𝑘=0

(−2𝜋2𝑦2/𝑎)𝑛
(2𝑘)!!

= √𝜋/𝑎
∞
∑
𝑘=0

(−2𝜋2𝑦2/𝑎)𝑛
2𝑘 ⋅ 𝑘!

= √𝜋/𝑎 𝑒−𝜋2𝑦2/𝑎.

□

Theorem 30. For any symmetric positive definite matrix 𝚺, the Fourier transform of 𝑓(𝐱) = exp(−𝐱⊤𝚺−1𝐱) is

𝑓(𝐲) = √𝜋𝑛 ⋅ det𝚺 exp(−𝜋2𝐲⊤𝚺𝐲).

Proof : Since 𝚺 is symmetric and positive definite, there exists an orthonormal basis 𝐯1,⋯ , 𝐯𝑛 and positive real
numbers 𝜆1,⋯ , 𝜆𝑛, such that

𝚺 =
𝑛
∑
𝑘=1

𝜆𝑘𝐯𝑘𝐯⊤𝑘 , 𝚺−1 =
𝑛
∑
𝑘=1

1
𝜆𝑘
𝐯𝑘𝐯⊤𝑘 , det𝚺 =

𝑛
∏
𝑘=1

𝜆𝑘.

We now express everything in the {𝐯𝑘} basis. For example, 𝑦𝑘 = ⟨𝐲, 𝐯𝑘⟩. We have

𝑓(𝐲) = ∫
ℝ𝑛

𝑒2𝜋𝑖⟨𝐱,𝐲⟩ 𝑒−𝐱⊤𝚺−1𝐱 d𝐱

=
𝑛
∏
𝑘=1

∫
∞

−∞
𝑒2𝜋𝑖𝑥𝑘𝑦𝑘 𝑒−𝑥2𝑘/𝜆𝑘 d𝑥𝑘

=
𝑛
∏
𝑘=1

√𝜋 ⋅ 𝜆𝑘 𝑒−𝜋
2𝜆𝑘𝑦2𝑘

= √𝜋𝑛 ⋅ det𝚺 exp(−𝜋2𝐲⊤𝚺𝐲).

□

3.2 Banaszczyk’s Lemma

Let 𝐿 be a lattice of rank 𝑛. If we impose a discrete Gaussian distribution𝒟 onto 𝐿, and sample points of 𝐿 according
to 𝒟, then the points most likely to be chosen should be points that are close to the origin. In this subsection, we
prove a lemma from Banaszczyk (1993) that analytically bounds the probability of getting points that are “far” from
the origin. For the remainder of this blogpost, when 𝑆 is a countable subset of ℝ𝑛 and 𝑠 is a positive real number,
we write

𝜌(𝑆) = ∑
𝐱∈𝑆

𝑒−𝜋||𝐱||2 ,

𝜌𝑠(𝑆) = ∑
𝐱∈𝑆

𝑒−𝜋||𝐱||2/𝑠2 .
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Lemma 31. For any 𝑎 > 0 and 𝐮, 𝐲 ∈ ℝ𝑛 we have

∑
𝐱∈𝐿+𝐮

𝑒2𝜋𝑖⟨𝐱,𝐲⟩ 𝑒−𝑎||𝐱||2 = √𝜋𝑛/𝑎𝑛
𝑑(𝐿) ∑

𝐳∈𝐿∗
𝑒−2𝜋𝑖⟨𝐳,𝐮⟩ 𝑒−𝜋2||𝐲+𝐳||2/𝑎.

Proof : This is a straightforward consequence of Theorem 15. □

Remark 32. In Lemma 31, if we set 𝐲 = 𝟎, we get

∑
𝐱∈𝐿+𝐮

𝑒−𝑎||𝐱||2 = √𝜋𝑛/𝑎𝑛
𝑑(𝐿) ∑

𝐳∈𝐿∗
𝑒−2𝜋𝑖⟨𝐳,𝐮⟩ 𝑒−𝜋2||𝐳||2/𝑎.

Setting also 𝐮 = 𝟎 gives us

∑
𝐱∈𝐿

𝑒−𝑎||𝐱||2 = √𝜋𝑛/𝑎𝑛
𝑑(𝐿) ∑

𝐳∈𝐿∗
𝑒−𝜋2||𝐳||2/𝑎.

Thus for any 𝐮 ∈ ℝ𝑛 we have

∑
𝐱∈𝐿+𝐮

𝑒−𝑎||𝐱||2 =
||||
√𝜋𝑛/𝑎𝑛
𝑑(𝐿) ∑

𝐳∈𝐿∗
𝑒−2𝜋𝑖⟨𝐳,𝐮⟩ 𝑒−𝜋2||𝐳||2/𝑎

||||

≤ √𝜋𝑛/𝑎𝑛
𝑑(𝐿) ∑

𝐳∈𝐿∗
||𝑒−2𝜋𝑖⟨𝐳,𝐮⟩ 𝑒−𝜋

2||𝐳||2/𝑎||

= √𝜋𝑛/𝑎𝑛
𝑑(𝐿) ∑

𝐳∈𝐿∗
𝑒−𝜋2||𝐳||2/𝑎

= ∑
𝐱∈𝐿

𝑒−𝑎||𝐱||2 .

On the other hand, we also have

∑
𝐱∈𝐿+𝐮

𝑒−𝑎||𝐱||2 = ∑
𝐱∈𝐿

𝑒−𝑎||𝐱+𝐮||2

= 1
2 ∑
𝐱∈𝐿

(𝑒−𝑎||𝐮+𝐱||2 + 𝑒−𝑎||𝐮−𝐱||2) (Because both 𝐱,−𝐱 ∈ 𝐿)

= 𝑒−𝑎||𝐮||2 ∑
𝐱∈𝐿

𝑒−𝑎||𝐱||2 cosh(2𝑎⟨𝐱, 𝐮⟩)

≥ 𝑒−𝑎||𝐮||2 ∑
𝐱∈𝐿

𝑒−𝑎||𝐱||2 .

□

Lemma 33. For any 𝑎 > 0, 𝐮 ∈ ℝ𝑛, 𝑘 ∈ {1,⋯ , 𝑛}, we have

∑𝐱∈𝐿+𝐮 𝑥2𝑘 𝑒−𝑎||𝐱||
2

∑𝐱∈𝐿 𝑒−𝑎||𝐱||
2 ≤ 1/𝑎.

If 𝐮 = 𝟎 then the bound can be improved to 1/2𝑎.
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Proof : Let 𝑓(𝐲) = ∑𝐱∈𝐿+𝐮 𝑒−𝑎||𝐱||
2 𝑒2𝜋𝑖⟨𝐱,𝐲⟩. Let 𝑓𝑘𝑘 = 𝜕2𝑓/𝜕𝑦2𝑘. Then we have

𝑓𝑘𝑘(𝐲) = −4𝜋2 ∑
𝐱∈𝐿+𝐮

𝑥2𝑘 𝑒−𝑎||𝐱||
2 𝑒2𝜋𝑖⟨𝐱,𝐲⟩.

Therefore
∑

𝐱∈𝐿+𝐮
𝑥2𝑘 𝑒−𝑎||𝐱||

2 = −𝑓𝑘𝑘(𝟎)4𝜋2 .

But by Lemma 31 we also have

𝑓(𝐲) = √𝜋𝑛/𝑎𝑛
𝑑(𝐿) ∑

𝐳∈𝐿∗
𝑒−2𝜋𝑖⟨𝐳,𝐮⟩ 𝑒−𝜋2||𝐲+𝐳||2/𝑎,

𝑓𝑘𝑘(𝐲) =
√𝜋𝑛/𝑎𝑛
𝑑(𝐿) ∑

𝐳∈𝐿∗
𝑒−2𝜋𝑖⟨𝐳,𝐮⟩ 𝑒−𝜋2||𝐲+𝐳||2/𝑎 [4𝜋4(𝑦𝑘 + 𝑧𝑘)2/𝑎2 − 2𝜋2/𝑎] ,

𝑓𝑘𝑘(𝟎) =
√𝜋𝑛/𝑎𝑛
𝑑(𝐿) ∑

𝐳∈𝐿∗
𝑒−2𝜋𝑖⟨𝐳,𝐮⟩ 𝑒−𝜋2||𝐳||2/𝑎 [4𝜋4𝑧2𝑘/𝑎2 − 2𝜋2/𝑎] .

Let 𝑔(𝐮) = ∑𝐳∈𝐿∗ 𝑒−𝜋
2||𝐳||2/𝑎 𝑒2𝜋𝑖⟨𝐳,𝐮⟩. Let 𝑔𝑘𝑘 = 𝜕2𝑔/𝜕𝑢2𝑘. We have

𝑔𝑘𝑘(𝐮) = −4𝜋2 ∑
𝐳∈𝐿∗

𝑧2𝑘 𝑒−𝜋
2||𝐳||2/𝑎 𝑒2𝜋𝑖⟨𝐮,𝐳⟩,

𝑓𝑘𝑘(𝟎) =
√𝜋𝑛/𝑎𝑛
𝑑(𝐿) (−2𝜋2/𝑎 ⋅ 𝑔(−𝐮) − 𝜋2/𝑎2 ⋅ 𝑔𝑘𝑘(−𝐮)) ,

∑
𝐱∈𝐿

𝑒−𝑎||𝐱||2 = √𝜋𝑛/𝑎𝑛
𝑑(𝐿) ∑

𝐳∈𝐿∗
𝑒−𝜋||𝐳||2 = √𝜋𝑛/𝑎𝑛

𝑑(𝐿) 𝑔(𝟎).

Combining these equations, we get

∑𝐱∈𝐿+𝐮 𝑥2𝑘 𝑒−𝑎||𝐱||
2

∑𝐱∈𝐿 𝑒−𝑎||𝐱||
2 = 𝑔(−𝐮)

2𝑎 ⋅ 𝑔(𝟎) +
𝑔𝑘𝑘(−𝐮)
4𝑎2 ⋅ 𝑔(𝟎) .

In Remark 32, we showed that 𝑔(−𝐮) ≤ 𝑔(𝟎). We also have 𝑔𝑘𝑘(𝟎) < 0. When 𝐮 = 𝟎, this is sufficient to show that

∑𝐱∈𝐿 𝑥2𝑘 𝑒−𝑎||𝐱||
2

∑𝐱∈𝐿 𝑒−𝑎||𝐱||
2 ≤ 1

2𝑎.

By Theorem 27, −𝑔𝑘𝑘 is a positive-definite function. We have

−2𝑔𝑘𝑘(−𝐮) = −𝑔𝑘𝑘(−𝐮) − 𝑔𝑘𝑘(𝐮) ≥ 2𝑔𝑘𝑘(𝟎).

It is equivalent to 𝑔𝑘𝑘(−𝐮) ≤ −𝑔𝑘𝑘(𝟎).

In Remark 32 we showed that 𝑔(𝐮)/𝑔(𝟎) ≥ 𝑒−𝑎||𝐮||2 . Let 𝑔𝑘 = 𝜕𝑔/𝜕𝑢𝑘 and notice that 𝑔𝑘(𝟎) = 0. It follows
that 𝑔𝑘𝑘(𝟎)/𝑔(𝟎) ≥ −2𝑎, because otherwise 𝑔(𝐮) would decrease too quickly in a neighborhood around 𝟎 and
𝑔(𝐮)/𝑔(𝟎) ≥ 𝑒−𝑎||𝐮||2 cannot hold.
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We conclude that
𝑔𝑘𝑘(−𝐮)
4𝑎2 ⋅ 𝑔(𝟎) ≤ − −𝑔𝑘𝑘(𝟎)

4𝑎2 ⋅ 𝑔(𝟎) ≤
2𝑎
4𝑎2 =

1
2𝑎,

∑𝐱∈𝐿+𝐮 𝑥2𝑘 𝑒−𝑎||𝐱||
2

∑𝐱∈𝐿 𝑒−𝑎||𝐱||
2 ≤ 1

2𝑎 +
1
2𝑎 = 1

𝑎.

□

Lemma 34. For any 𝑠 ≥ 1 we have
𝜌𝑠(𝐿) ≤ 𝑠𝑛 ⋅ 𝜌(𝐿).

Proof : Let 𝑓(𝑎) = 𝜌√𝑎(𝐿) = ∑𝐱∈𝐿 𝑒−𝜋||𝐱||
2/𝑎. We have

𝑓′(𝑎) = 𝜋
𝑎2 ∑𝐱∈𝐿

||𝐱||2𝑒−𝜋||𝐱||2/𝑎

= 𝜋
𝑎2 ∑𝐱∈𝐿

𝑛
∑
𝑘=1

𝑥2𝑘 𝑒−𝜋||𝐱||
2/𝑎

≤ 𝜋
𝑎2

𝑛
∑
𝑘=1

𝑎
2𝜋 ∑

𝐱∈𝐿
𝑒−𝜋||𝐱||2/𝑎

= 𝑛
2𝑎 ∑

𝐱∈𝐿
𝑒−𝜋||𝐱||2/𝑎

= 𝑛
2𝑎𝑓(𝑎).

Therefore [log𝑓(𝑎)]′ ≤ 𝑛/2𝑎. Integrating along 𝑎 gives us log[𝑓(𝑎)/𝑓(1)] ≤ log(𝑎) ⋅ 𝑛/2, so 𝑓(𝑎)/𝑓(1) ≤ 𝑎𝑛/2. Now
𝜌𝑠(𝐿)/𝜌(𝐿) = 𝑓(𝑠2)/𝑓(1) ≤ 𝑠𝑛. □

Lemma 35. For any 𝑠 ≥ 1 and any 𝐮 ∈ ℝ𝑛 we have

𝜌𝑠(𝐿 + 𝐮) ≤ 2𝑠𝑛 ⋅ 𝜌(𝐿).

Proof : Let 𝑓(𝑎) = 𝜌√𝑎(𝐿) = ∑𝐱∈𝐿 𝑒−𝜋||𝐱||
2/𝑎. Let 𝑔(𝑎) = 𝜌√𝑎(𝐿 + 𝐮). We have

𝑔′(𝑎) = 𝜋
𝑎2 ∑

𝐱∈𝐿+𝐮
||𝐱||2𝑒−𝜋||𝐱||2/𝑎

= 𝜋
𝑎2 ∑

𝐱∈𝐿+𝐮

𝑛
∑
𝑘=1

𝑥2𝑘 𝑒−𝜋||𝐱||
2/𝑎

≤ 𝜋
𝑎2

𝑛
∑
𝑘=1

𝑎
𝜋 ∑

𝐱∈𝐿
𝑒−𝜋||𝐱||2/𝑎

= 𝑛
𝑎 ∑
𝐱∈𝐿

𝑒−𝜋||𝐱||2/𝑎

≤ 𝑛𝑎𝑛/2−1𝑓(1).

Therefore

𝑔(𝑎) − 𝑔(1) ≤ 𝑛 ⋅ 𝑓(1)∫
𝑎

1
𝑡𝑛/2−1 d𝑡 = 2(𝑎𝑛/2 − 1)𝑓(1).
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By Remark 32 we have 𝑔(1) ≤ 𝑓(1). This finishes the proof. □

Lemma 36 (Banaszczyk’s Bound). For any 𝑐 ≥ 1/√2𝜋, let ℬ(𝑐) be the open ball

ℬ(𝑐) = {𝐱 ∈ 𝐿 | ||𝐱|| < 𝑐√𝑛},

then we have
𝜌(𝐿 ⧵ ℬ(𝑐))/𝜌(𝐿) < [𝑐√2𝜋𝑒 𝑒−𝜋𝑐2]

𝑛
.

Proof : For any 𝑡 ∈ (0, 1) we have

∑
𝐱∈𝐿

𝑒−𝜋𝑡||𝐱||2 = ∑
𝐱∈𝐿

𝑒𝜋(1−𝑡)||𝐱||2 𝑒−𝜋||𝐱||2

≥ ∑
𝐱∈𝐿

||𝐱||2≥𝑐2𝑛

𝑒𝜋(1−𝑡)||𝐱||2 𝑒−𝜋||𝐱||2

> 𝑒𝜋(1−𝑡)𝑐2𝑛 ∑
𝐱∈𝐿

||𝐱||2≥𝑐2𝑛

𝑒−𝜋||𝐱||2 .

By Lemma 34 we also have
∑
𝐱∈𝐿

𝑒−𝜋𝑡||𝐱||2 ≤ 𝑡−𝑛/2 ∑
𝐱∈𝐿

𝑒−𝜋||𝐱||2 .

Therefore
∑
𝐱∈𝐿

||𝐱||2≥𝑐2𝑛

𝑒−𝜋||𝐱||2 < 𝑡−𝑛/2 𝑒−𝜋(1−𝑡)𝑐2𝑛 ∑
𝐱∈𝐿

𝑒−𝜋||𝐱||2 .

This can be written as
𝜌(𝐿 ⧵ ℬ(𝑐))/𝜌(𝐿) < [𝑡−1/2 𝑒−𝜋(1−𝑡)𝑐2]

𝑛
.

Set 𝑡 = 1/2𝜋𝑐2 and we get

𝜌(𝐿 ⧵ ℬ(𝑐))/𝜌(𝐿) < [𝑐√2𝜋𝑒 ⋅ 𝑒−𝜋𝑐2]
𝑛
.

□

4 The Smoothing Parameter

For any lattice 𝐿, we have
𝜌𝑠(𝐿) = 1 + 𝜌𝑠(𝐿 ⧵ {𝟎}).

For any 𝐜 ∈ ℝ𝑛, by Lemma 31 we have

𝜌𝑠(𝐿 + 𝐜) = 𝑠𝑛
𝑑(𝐿) ∑

𝐳∈𝐿∗
𝑒−2𝜋𝑖⟨𝐜,𝐳⟩ 𝑒−𝜋𝑠2||𝐳||2 .

Now suppose that 𝜌1/𝑠(𝐿∗ ⧵ {𝟎}) is a very small value. Then the coefficient 𝑒−2𝜋𝑖⟨𝐜,𝐳⟩ will not have a significant effect
on the value of 𝜌𝑠(𝐿 + 𝐜). Formally:

𝜌1/𝑠(𝐿∗ ⧵ {𝟎}) ≤ 𝜀 ⇒ (1 − 𝜀) 𝑠𝑛
𝑑(𝐿) ≤ 𝜌𝑠(𝐿 + 𝐜) ≤ (1 + 𝜀) 𝑠𝑛

𝑑(𝐿) .
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Notice that the range of 𝜌𝑠(𝐿 + 𝐜) does not depend on 𝐜.

The significance of this inequality is as follows. If 𝐿′ is a sublattice of 𝐿, then we can define an equivalence relation
𝐯 ↔ 𝐯′ on 𝐿, determined by

𝐯 ↔ 𝐯′ ≡ 𝐯 − 𝐯′ ∈ 𝐿′.

Each equivalence class of this relation can be written as 𝐿′ + 𝐜 for some 𝐜 ∈ 𝐿. Now if 𝜌𝑠(𝐿′ + 𝐜) is roughly equal
to a constant for each of these equivalence classes, then we can sample points from 𝐿 according to the distribution
𝜌𝑠(𝐿), and the probability of getting points from each of these equivalence classes is roughly uniform. This is the
core idea behind the regularity lemma.

Now how should we set the parameter 𝑠 so that the value 𝜌1/𝑠(𝐿∗⧵{𝟎}) becomes negligible? To answer this question,
Micciancio and Regev (2004) introduced the “smoothing parameter” and related it to other lattice properties.

Definition 37. For a given lattice 𝐿 and 𝜀 > 0, the smallest positive real number 𝑠 that satisfies

𝜌1/𝑠(𝐿∗ ⧵ {𝟎}) ≤ 𝜀

is called the smoothing parameter of 𝐿, denoted by 𝜂𝜀(𝐿).

For a given lattice 𝐿, we use 𝜆1(𝐿) to denote the length of the shortest non-zero vector in 𝐿.

Lemma 38. If 𝐿 is a lattice of rank 𝑛, and 𝜀 = 2−2𝑛, then 𝜂𝜀(𝐿) ≤ √𝑛/𝜆1(𝐿∗).

Proof : If 𝑠 > √𝑛/𝜆1(𝐿∗), then the only vector 𝐯 in 𝑠𝐿∗ with ||𝐯|| < √𝑛 is 𝟎. Then by Lemma 36 we have

𝜌1/𝑠(𝐿∗ ⧵ {𝟎}) = 𝜌(𝑠𝐿∗ ⧵ {𝟎}) < 𝐶𝑛 ⋅ 𝜌(𝑠𝐿∗) = 𝐶𝑛 ⋅ (1 + 𝜌(𝑠𝐿∗ ⧵ {𝟎}))

where 𝐶 = √2𝜋𝑒 ⋅ 𝑒−𝜋 < 1/4. Therefore

𝜌1/𝑠(𝐿∗ ⧵ {𝟎}) <
𝐶𝑛

1 − 𝐶𝑛 < 2−2𝑛.

□

Lemma 39. For a given lattice 𝐿 of rank 𝑛 and any 𝑠 > 0, 𝜀 > 0, we have

𝜌1/𝑠(𝐿) ≤ max (1, (𝜂𝜀(𝐿
∗)

𝑠 )
𝑛
) (1 + 𝜀).

Proof : If 𝑠 ≥ 𝜂𝜀(𝐿∗) then 𝜌1/𝑠(𝐿) ≤ 1 + 𝜀 by the definition of 𝜂𝜀(𝐿∗). If 𝑠 < 𝜂𝜀(𝐿∗) then let 𝜂 = 𝜂𝜀(𝐿∗) and

𝜌1/𝑠(𝐿) =
𝑠−𝑛
𝑑(𝐿)𝜌𝑠(𝐿

∗) < 𝑠−𝑛
𝑑(𝐿)𝜌𝜂(𝐿

∗) = (𝜂/𝑠)𝑛 ⋅ 𝜌1/𝜂(𝐿) ≤ (𝜂/𝑠)𝑛 ⋅ (1 + 𝜀).

□

5 Algebraic Number Theory

In Ring-LWE the lattices under study are algebraically structured. They in fact correspond to ideals in rings of
algebraic numbers. In this sectionwepresent the basic properties of these ideals. Jarvis (2014) is a good introduction
to the theory, but only covers the basics. Neukirch (1999) presents the results in greater generality, but is more
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difficult to read.

Let 𝑃(𝑋) be a polynomial with coefficients in ℚ, such that 𝑃(𝑋) is irreducible over ℚ. Suppose that

𝑃(𝑋) = 𝑐0 + 𝑐1𝑋 +⋯+ 𝑐𝑛𝑋𝑛.

The formal derivative of 𝑃(𝑋) is defined to be

𝑃′(𝑋) = 𝑐1 + 2𝑐2𝑋 +⋯+ 𝑛𝑐𝑛𝑋𝑛−1.

Since 𝑃(𝑋) is irreducible, it is coprime with its formal derivative. This is equivalent to 𝑃(𝑋) having no repeated
roots over ℂ. Thenℚ[𝑋]/𝑃(𝑋) is a field, and is called a finite and separable extension ofℚ. Elements ofℚ[𝑋]/𝑃(𝑋)
can be represented as polynomials in 𝑋 of degree at most 𝑛 − 1 and with rational coefficients. To avoid confusion,
when representing elements of 𝐾 we shall use 𝛾 to represent the placeholder variable of the polynomial, and leave
𝑋, 𝑌,⋯ for variables of other polynomials. We denote the field ℚ[𝑋]/𝑃(𝑋) by 𝐾.

Definition 40. Anon-zero rational polynomial𝑚(𝑋) is an annihilating polynomial for an element𝛼 ∈ 𝐾, if𝑚(𝛼) = 0
in 𝐾.

Remark 41. If 𝑚(𝑋) is an annihilating polynomial for some 𝛼 ∈ 𝐾 then deg𝑚 ≥ 1. If deg𝑚 = 0, then 𝑚(𝑋) = 𝑐
for some 𝑐 ∈ ℚ, but𝑚(𝛼) = 0 so 𝑐 = 0. This contradicts the requirement that𝑚(𝑋) is non-zero.

Definition 42. A non-zero rational polynomial𝑚(𝑋) ismonic if the leading coefficient of𝑚(𝑋) is 1.

Lemma 43. For each 𝛼 ∈ 𝐾, there exists a unique monic annihilating polynomial 𝑚(𝑋) for 𝛼 that has the lowest
degree among all annihilating polynomials for 𝛼. We call𝑚(𝑋) theminimal polynomial of 𝛼.

Proof : Jarvis (2014, Lemma 2.4, p. 20). □

Lemma 44. The minimal polynomial of any 𝛼 ∈ 𝐾 is irreducible.

Proof : Jarvis (2014, Lemma 2.6, p. 20). □

Lemma 45. If𝑚(𝑋) is an annihilating polynomial of some 𝛼 ∈ 𝐾, then it is a multiple of the minimal polynomial
of 𝛼.

Proof : Jarvis (2014, Lemma 2.7, p. 21). □

Definition 46. An element 𝛼 ∈ 𝐾 is called an algebraic integer if the minimal polynomial of 𝛼 has only integer
coefficients.

Lemma 47. An element 𝛼 ∈ 𝐾 is an algebraic integer iff it is the root of amonic polynomial with integer coefficients
(not necessarily minimal).

Proof : Jarvis (2014, Lemma 2.22, p. 29). Suppose that 𝑚′(𝑋) is a monic polynomial with integer coefficients such
that𝑚′(𝛼) = 0. Then𝑚′(𝑋) is amultiple of theminimal polynomial𝑚(𝑋) of 𝛼, so we canwrite𝑚′(𝑋) = 𝑚(𝑋)⋅𝑔(𝑋).
Since𝑚(𝑋) and𝑚′(𝑋) are monic, so is 𝑔(𝑋). Suppose that some coefficients of𝑚(𝑋) and 𝑔(𝑋) are not integers. Let
𝑎 be the least common multiple (LCM) of the denominators of non-zero coefficients in 𝑚(𝑋). Let 𝑏 be the LCM
of the denominators of non-zero coefficients in 𝑔(𝑋). Then the polynomials 𝑎𝑚(𝑋) and 𝑏𝑔(𝑋) have only integer
coefficients.

The greatest common divisor (GCD) of the non-zero coefficients of 𝑎𝑚(𝑋) must be 1. Since 𝑚(𝑋) is monic, the
leading coefficient of 𝑎𝑚(𝑋) is just 𝑎. If 𝑎 > 1, let 𝑝 be a prime factor of 𝑎, and let 𝑘 be the highest integer such that
𝑝𝑘 divides 𝑎. Then at least one non-zero coefficient 𝑐 of 𝑚(𝑋) has a denominator that is a multiple of 𝑝𝑘, and the
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numerator of that coefficient is not a multiple of 𝑝. We see that 𝑎𝑐 cannot be a multiple of 𝑝. Similarly, the GCD of
the non-zero coefficients of 𝑏𝑔(𝑋)must be 1.

The GCD of the non-zero coefficients of 𝑎𝑚(𝑋) ⋅ 𝑏𝑔(𝑋)must be 1. If this is not the case, let 𝑝 be a prime factor of the
GCD. Suppose that

𝑎𝑚(𝑋) = 𝑚0 +𝑚1𝑋 +⋯+𝑚𝑟𝑋𝑟, 𝑏𝑔(𝑋) = 𝑔0 + 𝑔1𝑋 +⋯+ 𝑔𝑠𝑋𝑠,

𝑎𝑚(𝑋) ⋅ 𝑏𝑔(𝑋) =
𝑟+𝑠
∑
𝑖=0

𝑖
∑
𝑗=0

𝑚𝑗𝑔𝑖−𝑗𝑋 𝑖.

Since the GCD of the non-zero coefficients of 𝑎𝑚(𝑋) is 1, not all coefficients of 𝑎𝑚(𝑋) are multiples of 𝑝. Let𝑚𝑢𝑋𝑢

be the highest term of 𝑎𝑚(𝑋) that is not a multiple of 𝑝. Similarly, let 𝑔𝑣𝑋𝑣 be the highest term of 𝑏𝑔(𝑋) that is not
a multiple of 𝑝. Consider the coefficient of 𝑋𝑢+𝑣 in 𝑎𝑚(𝑋) ⋅ 𝑏𝑔(𝑋), which is equal to ∑𝑢+𝑣

𝑗=0 𝑚𝑗𝑔𝑢+𝑣−𝑗 . The terms
having 𝑗 < 𝑢 can be dropped since𝑚𝑗 is a multiple of 𝑝. The terms having 𝑢 + 𝑣 − 𝑗 < 𝑣 can also be dropped since
𝑚𝑢+𝑣−𝑗 is a multiple of 𝑝. The only remaining term is 𝑚𝑢𝑔𝑣, which is not a multiple of 𝑝. We conclude that the
coefficient of 𝑋𝑢+𝑣 cannot be a multiple of 𝑝. This contradicts the assumption that 𝑝 is a factor of every coefficient
of 𝑎𝑚(𝑋) ⋅ 𝑏𝑔(𝑋).

Recall that we have assumed 𝑚′(𝑋) = 𝑚(𝑋) ⋅ 𝑔(𝑋), so 𝑎𝑚(𝑋) ⋅ 𝑏𝑔(𝑋) = 𝑎𝑏 ⋅ 𝑚′(𝑋). Since 𝑚′(𝑋) has only integer
coefficients, 𝑎𝑏 is a factor of every coefficient of 𝑎𝑚(𝑋) ⋅ 𝑏𝑔(𝑋). We must have 𝑎 = 𝑏 = 1. Hence both 𝑚(𝑋) and
𝑔(𝑋) have only integer coefficients. □

Neukirch (1999, p. 8) gives a different proof of this lemma, but Neukirch (1999) uses a different definition of alge-
braic integers, and proves that it is equivalent to Definition 46.

Lemma 48. For every 𝛼 ∈ 𝐾 there exists an integer 𝑘 such that 𝑘𝛼 is an algebraic integer.

Proof : Neukirch (1999, p. 8). □

5.1 Algebraic Integers as a Ring

Let 𝛼1,⋯ , 𝛼𝑘 be a finite number of elements in 𝐾. Thenℛ = ℤ[𝛼1,⋯ , 𝛼𝑘] is a subring of 𝐾. Each element inℛ can
be written as a finite sum of monomials

𝑧𝛼𝑟11 ⋯𝛼𝑟𝑘𝑘
where 𝑧 ∈ ℤ, 𝑟1,⋯ , 𝑟𝑘 ∈ ℕ. We sayℛ is finitely generated, if there exists a finite number of elements𝜔1,⋯ , 𝜔𝑙 ∈ ℛ,
such that every element inℛ can be written as

𝑟1𝜔1 +⋯+ 𝑟𝑙𝜔𝑙

where 𝑟1,⋯ , 𝑟𝑙 ∈ ℤ.

Theorem 49. The following three propositions are equivalent:

1. ℤ[𝛼1,⋯ , 𝛼𝑘] is finitely generated;

2. The elements 𝛼1,⋯ , 𝛼𝑘 are all algebraic integers;

3. All elements in ℤ[𝛼1,⋯ , 𝛼𝑘] are algebraic integers.

Proof : Jarvis (2014, Theorem 2.25, Corollary 2.26, Proposition 2.27, pp. 31–32). Letℛ = ℤ[𝛼1,⋯ , 𝛼𝑘].

(3) ⇒ (2): Obvious.
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(2) ⇒ (1): Let𝑚𝑖(𝑋) be the minimal polynomial of 𝛼𝑖. Then𝑚𝑖(𝛼𝑖) = 0, and 𝛼deg𝑚𝑖
𝑖 = (𝑋deg𝑚𝑖 −𝑚𝑖(𝑋))(𝛼𝑖). Notice

that deg[𝑋deg𝑚𝑖−𝑚𝑖(𝑋)] < deg𝑚𝑖. Therefore, each 𝛼𝑟𝑖 with 𝑟 ≥ deg𝑚𝑖 can be expressed as an integral combination
of 1, 𝛼𝑖,⋯ , 𝛼deg𝑚𝑖−1

𝑖 . Hence each monomial inℛ can be expressed as an integral combination of monomials

𝛼𝑟11 ⋯𝛼𝑟𝑘𝑘

with 𝑟𝑖 ∈ {0, 1,⋯ , deg𝑚𝑖−1}. There are only a finite number of suchmonomials. Therefore,ℛ is finitely generated.

(1) ⇒ (3): Let 𝜔1,⋯ , 𝜔𝑙 be an integral basis of ℛ. For a given 𝛼 ∈ ℛ, the mapping 𝛽 ↦ 𝛼𝛽 is linear. Suppose that
for each 𝜔𝑖 we have

𝛼𝜔𝑖 =
𝑙
∑
𝑗=1

𝑟𝑖𝑗𝜔𝑗 .

Define the matrix

𝐌𝛼 = (
𝑟11 ⋯ 𝑟𝑙1
⋮ ⋱ ⋮
1𝑙 ⋯ 𝑟𝑙𝑙

) .

Then for every 𝛽 ∈ ℛ, if 𝛽 = 𝑠1𝜔1 +⋯+ 𝑠𝑙𝜔𝑙, we have

𝛼𝛽 = (𝜔1 ⋯ 𝜔𝑙)𝐌𝛼 (
𝑠1
⋮
𝑠𝑙
) .

Furthermore, if 𝑓(𝑋) is a polynomial, then

𝑓(𝛼) ⋅ 𝛽 = (𝜔1 ⋯ 𝜔𝑙) 𝑓(𝐌𝛼) (
𝑠1
⋮
𝑠𝑙
) .

Let 𝐹(𝑋) be the characteristic polynomial of𝐌𝛼, which is a monic polynomial of degree 𝑙 with integer coefficients.
It is known the characteristic polynomial of a matrix is an annihilating polynomial of that matrix (Caylay-Hamilton
theorem). Hence 𝐹(𝛼) = 0, and 𝛼 is an algebraic integer by Lemma 47. □

Theorem 50. The set of algebraic integers forms a subring of 𝐾.

Proof : If 𝛼, 𝛽 are two algebraic integers in 𝐾, then 𝛼 + 𝛽, 𝛼𝛽 ∈ ℤ[𝛼, 𝛽], and they are both algebraic integers by
Theorem 49. □

5.2 Extension Field as a Vector Space

The field 𝐾 can be seen as an 𝑛-dimensional vector space over ℚ, and {1, 𝛾, 𝛾2,⋯ , 𝛾𝑛−1} is a basis for this vector
space. In this section we analyze the structure of bases for this vector space.

Lemma 51. The minimal polynomial of any 𝛼 ∈ 𝐾 has degree at most 𝑛.

Proof : The vectors corresponding to 1, 𝛼, 𝛼2,⋯ , 𝛼𝑛 cannot be linearly independent, since the dimension of the
vector space is 𝑛. Hence we can express 0 as a non-trivial linear combination of 1, 𝛼,⋯ , 𝛼𝑛. □

For a given 𝛼 ∈ 𝐾, let𝑚(𝑋) be theminimal polynomial of 𝛼 and let 𝑟 = deg𝑚(𝑋). If 𝑟 = 1 then 𝛼 ∈ ℚ andwe ignore
this case. The vectors corresponding to 1, 𝛼,⋯ , 𝛼𝑟−1 are linearly independent and span a subspace of 𝐾. They do
not span the full space unless 𝑟 = 𝑛. Let 𝑓(𝑋) be a polynomial of degree at most 𝑟 − 1. As𝑚(𝑋) is irreducible, we
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can find polynomials 𝑔(𝑋), ℎ(𝑋) such that 𝑓(𝑋) ⋅ 𝑔(𝑋) = 𝑚(𝑋) ⋅ ℎ(𝑋) + 1. Then 𝑓(𝛼) ⋅ 𝑔(𝛼) = 1. As such, the inverse
of any element spanned by 1, 𝛼,⋯ , 𝛼𝑟−1 is also spanned by 1, 𝛼,⋯ , 𝛼𝑟−1. The elements that can be written as a
polynomial in 𝛼 form a subfield of 𝐾. We denote this field by ℚ(𝛼).

Let 𝛽 be an element of 𝐾 not in ℚ(𝛼). We claim that 1, 𝛼,⋯ , 𝛼𝑟−1, 𝛽, 𝛼𝛽,⋯ , 𝛼𝑟−1𝛽 are linearly independent. If this
is not the case, we express 0 as a non-trivial linear combination of these elements. The combination must involve
at least one of 𝛽,⋯ , 𝛼𝑟−1𝛽, since 1,⋯ , 𝛼𝑟−1 are linearly independent. Then we can factor out 𝛽 and write the
combination as

𝛽 ⋅ 𝐹(𝛼) = 𝐺(𝛼) ⇒ 𝛽 = 𝐺(𝛼)
𝐹(𝛼) ,

where 𝐹(𝑋), 𝐺(𝑋) are polynomials of degree at most 𝑟 − 1. This means 𝛽 is already in ℚ(𝛼).

Now let 𝑘 be the least positive integer such that the vectors

1,⋯ , 𝛼𝑟−1, 𝛽,⋯ , 𝛼𝑟−1𝛽,⋯ , 𝛽𝑘,⋯ , 𝛼𝑟−1𝛽𝑘

are linearly dependent. We have just shown that 𝑘 ≥ 2. We claim that the set of linearly independent vectors

𝑆 = {1,⋯ , 𝛼𝑟−1, 𝛽,⋯ , 𝛼𝑟−1𝛽,⋯ , 𝛽𝑘−1,⋯ , 𝛼𝑟−1𝛽𝑘−1}

spans a larger subfield of 𝐾. Since adding 𝛽𝑘,⋯ , 𝛼𝑟−1𝛽𝑘−1 causes the set to become linearly dependent, we can
factor out 𝛽𝑘 and write

𝛽𝑘 ⋅ 𝐹(𝛼) = 𝐺(𝛼, 𝛽) = 𝑔0 + 𝑔1𝛽 +⋯+ 𝑔𝑘−1𝛽𝑘−1

where 𝑔0,⋯ , 𝑔𝑘−1 ∈ ℚ(𝛼). Then we have

𝛽𝑘 = 𝑔0
𝐹(𝛼) +

𝑔1
𝐹(𝛼)𝛽 +⋯+ 𝑔𝑘−1

𝐹(𝛼)𝛽
𝑘−1,

where each of the fractions is in ℚ(𝛼) and the sum can be expressed as a linear combination of elements in 𝑆. We
may call the polynomial

𝑚𝛽(𝑋) = 𝑋𝑘 − 𝑔𝑘−1
𝐹(𝛼)𝑋

𝑘−1 −⋯− 𝑔0
𝐹(𝛼)

the minimal polynomial of 𝛽 overℚ(𝛼). It is not the same thing as the minimal polynomial of 𝛽 (overℚ), since we
are allowing coefficients in ℚ(𝛼).

A simple corollary of the above result is that each 𝛽𝑞 with 𝑞 ≥ 𝑘 can be expressed as a linear combination of
elements in 𝑆. We now look at how to express the inverse elements. Let 𝑚𝛽(𝑋) be the minimal polynomial of 𝛽
overℚ(𝛼), as defined above, and let 𝑘 = deg𝑚𝛽(𝑋). Then𝑚𝛽(𝑋) is irreducible overℚ(𝛼), otherwise𝑚𝛽(𝑋)would
not beminimal. Sinceℚ(𝛼) is a field, we can do polynomial long division inℚ(𝛼). Thus for each polynomial 𝐹(𝑋) of
degree at most 𝑘 − 1 and with coefficients in ℚ(𝛼), we can find polynomials 𝐺(𝑋),𝐻(𝑋) (with coefficients in ℚ(𝛼))
such that 𝐹(𝑋) ⋅ 𝐺(𝑋) = 𝑚𝛽(𝑋) ⋅ 𝐻(𝑋) + 1. This implies 𝐺(𝛽) = 1/𝐹(𝛽).

We have thus constructed a new subfieldℚ(𝛼, 𝛽) of 𝐾. It is strictly larger thanℚ(𝛼) because 𝛽 ∉ ℚ(𝛼). Ifℚ(𝛼, 𝛽) ≠
𝐾, then we can repeat the above construction to construct further larger subfields of 𝐾. Notice that the basis of
ℚ(𝛼, 𝛽) (as a vector space overℚ) contains 𝑟𝑘 elements, which is a multiple of 𝑟. If one repeats the above construc-
tion to construct another subfield ℚ(𝛼, 𝛽, 𝛿), then the basis of ℚ(𝛼, 𝛽, 𝛿) (as a vector space over ℚ) would contain
𝑟𝑘𝑡 elements for some positive integer 𝑡 ≥ 2. This leads us to the following lemma:

Lemma 52. If𝑚(𝑋) is the minimal polynomial of some 𝛼 ∈ 𝐾, then deg𝑚 is a factor of 𝑛.

Proof : Starting from the subfieldℚ(𝛼), repeat the subfield extension procedure described above untilℚ(𝛼, 𝛽,⋯) =
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𝐾. Then the basis of ℚ(𝛼, 𝛽,⋯) (as a vector space over ℚ) contains 𝑑 ⋅ deg𝑚 elements, where 𝑑 is some positive
integer. But {1, 𝛾,⋯ , 𝛾𝑛−1} is also a basis of 𝐾, so 𝑑 ⋅ deg𝑚 = 𝑛, and deg𝑚 is a factor of 𝑛. □

5.3 The Canonical Basis

Since 𝑃(𝑋) is irreducible overℚ, there exists 𝑛 distinct roots 𝛾1,⋯ , 𝛾𝑛 of 𝑃(𝑋) inℂ. Each root 𝛾𝑖 induces an embed-
ding 𝜎𝑖 of 𝐾 into ℂ, by having 𝜎𝑖(𝛾) = 𝛾𝑖. It is easy to see that these are all the possible embeddings of 𝐾 into ℂ,
since 𝛾must be mapped to a root of 𝑃(𝑋).

Consider the matrix

𝐌 =
⎛
⎜
⎜
⎝

1 𝛾1 ⋯ 𝛾𝑛−11
1 𝛾2 ⋯ 𝛾𝑛−12
⋮ ⋮ ⋱ ⋮
1 𝛾𝑛 ⋯ 𝛾𝑛−1𝑛

⎞
⎟
⎟
⎠

.

We see that𝐌 is a Vandermonde matrix, and

det𝐌 = ∏
1≤𝑖<𝑗≤𝑛

(𝛾𝑗 − 𝛾𝑖) ≠ 0.

Thus the vectors 𝐯𝑖 = (𝛾𝑖1,⋯ , 𝛾𝑖𝑛) form a basis of ℂ𝑛. We call {𝐯𝑖} the canonical basis of 𝐾 in ℂ𝑛.

Suppose that we embed 𝐾 as a vector space intoℂ𝑛, by mapping 𝛾𝑖 to 𝐯𝑖 in the canonical basis. Then the image of 𝛼
is [𝜎1(𝛼) ⋯ 𝜎𝑛(𝛼)]

⊤
. If 𝐹(𝑋) is a rational polynomial, then the image of 𝐹(𝛾) is (𝐹(𝛾1),⋯ , 𝐹(𝛾𝑛)). From this we

see that:

Lemma 53. For any rational polynomial 𝐹(𝑋), 𝐹(𝛾) = 0 in 𝐾 iff 𝐹(𝜎(𝛾)) = 0 for every embedding 𝜎 of 𝐾 into ℂ. □

5.4 Norms and Traces

For each 𝛼 ∈ 𝐾, the mapping 𝑥 ↦ 𝛼𝑥 is a linear transformation on the vector space 𝐾, and can be represented by a
matrix𝐌𝛼 ∈ ℚ𝑛×𝑛. If 𝛼 ≠ 0 then𝐌𝛼 is invertible, since themapping 𝑥 ↦ 𝛼𝑥 has an inverse 𝑥 ↦ 𝛼−1𝑥. We denote
the determinant of this mapping by N(𝛼), and its trace by T(𝛼). It is well-known that characteristic polynomials,
determinants, and traces do not depend on the basis used for representation.

Let𝑚(𝑋) be the minimal polynomial of 𝛼. We suppose that

𝑚(𝑋) = 𝑋𝑟 + 𝑐𝑟−1𝑋𝑟−1 +⋯+ 𝑐0.

In Lemma 52 we showed that deg𝑚(𝑋) is a factor of 𝑛. Let 𝑟 = deg𝑚(𝑋) and 𝑑 = 𝑛/𝑟. Find a basis of 𝐾 of the form

𝑆 = {1, 𝛼,⋯ , 𝛼𝑟−1, 𝛽1, 𝛽1𝛼,⋯ , 𝛽1𝛼𝑟−1,⋯ , 𝛽𝑑−1, 𝛽𝑑−1𝛼,⋯ , 𝛽𝑑−1𝛼𝑟−1}.

The matrix𝐌𝛼 under this basis consists of 𝑑 blocks along the diagonal, each having the form

⎛
⎜
⎜
⎜
⎜
⎝

0 0 ⋯ 0 −𝑐0
1 0 ⋯ 0 −𝑐1
0 1 ⋯ 0 −𝑐2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 −𝑐𝑟−1

⎞
⎟
⎟
⎟
⎟
⎠

.

Matrices of this form are called companion matrices. The characteristic polynomial of each block is 𝑚(𝑋). Hence
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the characteristic polynomial of𝐌𝛼 is𝑚(𝑋)𝑑. From this we get:

Lemma 54. If 𝛼 ∈ 𝐾 is an algebraic integer, then both N(𝛼) and T(𝛼) are integers.

Proof : N(𝛼) is (−1)𝑛 times the constant term of the characteristic polynomial 𝑓(𝜆) of𝐌(𝛼), and T(𝛼) is−1 times the
coefficient of the second-highest term of 𝑓(𝜆). Since 𝑓(𝜆) is a power of a polynomial with only integer coefficients,
both values are integers. □

Now consider the two subfields ℱ1 = ℚ(𝛼) and ℱ2 = ℚ(𝛼, 𝛾). It is obvious that ℱ2 = 𝐾. From our previous
discussion, 𝛾 has a minimal polynomial 𝐺(𝑋) over ℱ1, and deg𝐺(𝑋) = 𝑛/𝑟 = 𝑑. Suppose that

𝐺(𝑋) = 𝑋𝑑 + 𝑔𝑑−1𝑋𝑑−1 +⋯+ 𝑔0

where 𝑔0,⋯ , 𝑔𝑑−1 ∈ ℱ1. Each 𝑔𝑖 can be written as a polynomial in 𝛼. We assume that

𝑔𝑖 = 𝑡𝑖,𝑟−1𝛼𝑟−1 + 𝑡𝑖,𝑟−2𝛼𝑟−2 +⋯+ 𝑡𝑖,0.

Let 𝛼1,⋯ , 𝛼𝑟 be the 𝑟 distinct roots of𝑚(𝑋) in ℂ. We make 𝑟 copies 𝐺(𝑋) and denote them by 𝐺1(𝑋),⋯ ,𝐺𝑟(𝑋). In
𝐺𝑖(𝑋), we replace 𝛼 with 𝛼𝑖. Then we define

𝐻(𝑋) = 𝐺1(𝑋)⋯𝐺𝑟(𝑋).

It is easy to see that 𝐻(𝑋) is a monic polynomial of degree 𝑟𝑑 = 𝑛. For each 𝑖 < 𝑛, the coefficient ℎ𝑖 of 𝑋 𝑖 is

ℎ𝑖 = ∑
0≤𝑘1,⋯,𝑘𝑟≤𝑑
𝑘1+⋯+𝑘𝑟=𝑖

𝑟
∏
𝑗=1

𝑔𝑘𝑗 (𝛼𝑗)

where 𝑔𝑑 = 1. For given indices 𝑠1,⋯ , 𝑠𝑟, the coefficient of 𝛼𝑠11 ⋯𝛼𝑠𝑟𝑟 in ℎ𝑖 is

𝑢(𝑠1,⋯ , 𝑠𝑟) = ∑
0≤𝑘1,⋯,𝑘𝑟≤𝑑
𝑘1+⋯+𝑘𝑟=𝑖

𝑟
∏
𝑗=1

𝑡𝑘𝑗 ,𝑠𝑗 .

If 𝑠′1,⋯ , 𝑠′𝑟 is a permutation of 𝑠1,⋯ , 𝑠𝑟, we see that 𝑢(𝑠1,⋯ , 𝑠𝑟) = 𝑢(𝑠′1,⋯ , 𝑠′𝑟). This is because we can apply the
same permutation to the indices 𝑘1,⋯ , 𝑘𝑟. Thus ℎ𝑖 is a symmetric polynomial in 𝛼1,⋯ , 𝛼𝑟. By Vieta’s formulas, we
see that each ℎ𝑖 is a rational number, and 𝐻(𝑋) is a rational polynomial.

For each embedding 𝜎 of 𝐾 into ℂ we must have 𝐻(𝜎(𝛾)) = 0. This is because each embedding 𝜎 must satisfy
𝑃(𝜎(𝛾)) = 0 and 𝑓(𝜎(𝛾)) = 𝜎(𝛼)where 𝑓(𝛾) is the polynomial representation of 𝛼. As𝑚(𝜎(𝛼)) = 0 is a consequence
of these two equations, 𝜎(𝛼) must be a one of 𝛼1,⋯ , 𝛼𝑟, and the corresponding factor 𝐺𝑖(𝑋) becomes 0. Thus by
Lemma 53, 𝐻(𝑋) is an annihilating polynomial of 𝛾. Since deg𝐻(𝑋) = 𝑛, it must be identical to 𝑃(𝑋).

What we have shown above is that, the 𝑛 roots of 𝑃(𝑋) inℂ can be classified into 𝑟 groups. Each group contains the
𝑑 distinct roots of 𝐺𝑖(𝑋). For 𝑗 ≠ 𝑖, roots of 𝐺𝑖(𝑋) cannot be roots of 𝐺𝑗(𝑋), since the 𝑛 roots of 𝑃(𝑋) = 𝐻(𝑋) are
distinct. Now if an embedding 𝜎 of 𝐾 into ℂ satisfies 𝐺𝑖(𝜎(𝛾)) = 0, we must also have 𝜎(𝛼) = 𝛼𝑖. This is because
𝜎(𝐺(𝛾)) = 0 must be true, but 𝜎(𝐺(𝑋)) must be one of 𝐺1(𝑋),⋯ ,𝐺𝑟(𝑋) depending on 𝜎(𝛼). Thus each root of
𝑚(𝑋) = 0 occurs with multiplicity 𝑑 within 𝜎1(𝛼),⋯ , 𝜎𝑛(𝛼).
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Lemma 55. Let 𝜎1,⋯ , 𝜎𝑛 be the embeddings of 𝐾 into ℂ. Then for each 𝛼 ∈ 𝐾 we have

N(𝛼) =
𝑛
∏
𝑘=1

𝜎𝑘(𝛼), T(𝛼) =
𝑛
∑
𝑘=1

𝜎𝑘(𝛼).

Proof : Jarvis (2014, Proposition 3.16, p. 47). Simply check that 𝜎1(𝛼),⋯ , 𝜎𝑛(𝛼) are exactly the roots of the charac-
teristic polynomial of𝐌𝛼. □

5.5 Algebraic Integers as a Lattice

Via the canonical basis we can embed 𝐾 as a vector space into ℂ𝑛. However, such a representation is not yet
compatiblewith our notion of lattice, becausewe need a representation inℝ𝑛. This issue can be resolved as follows.
Let 𝛾1,⋯ , 𝛾𝑛 be the 𝑛 roots of 𝑃(𝑋). Suppose that there are 𝑠 real roots and 𝑡 complex roots. Since the coefficients
of 𝑃(𝑋) are real, the complex roots always appear in conjugate pairs. Therefore we may assume 𝛾1,⋯ , 𝛾𝑠 ∈ ℝ, and
𝛾𝑠+𝑘 = 𝛾𝑛+1−𝑘. Then for every 𝛼 ∈ 𝐾 we have 𝜎𝑠+𝑘(𝛼) = 𝜎𝑛+1−𝑘(𝛼). We can thus represent 𝛼 by the vector

𝜶 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜎1(𝛼)
⋮

𝜎𝑠(𝛼)
Re(𝜎𝑠+1(𝛼)) + Im(𝜎𝑠+1(𝛼))
Re(𝜎𝑠+1(𝛼)) − Im(𝜎𝑠+1(𝛼))

⋮
Re(𝜎𝑠+𝑡/2(𝛼)) + Im(𝜎𝑠+𝑡/2(𝛼))
Re(𝜎𝑠+𝑡/2(𝛼)) − Im(𝜎𝑠+𝑡/2(𝛼))

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Notice that we are only taking the first 𝑡/2 complex embeddings. However, each complex embedding is split into
two components, so in total we still have 𝑛 components. This embedding of 𝐾 into ℝ𝑛 is equivalent as an inner
product space to the embedding into ℂ𝑛. Recall that the standard inner product on ℂ𝑛 is

⟨𝐳, 𝐳′⟩ =
𝑛
∑
𝑘=1

𝑧𝑖𝑧′𝑖 .

Since the embeddings are in conjugate pairs, we have

𝜎𝑠+𝑘(𝛼)𝜎𝑠+𝑘(𝛽) + 𝜎𝑛+1−𝑘(𝛼)𝜎𝑛+1−𝑘(𝛽) = 𝜎𝑠+𝑘(𝛼)𝜎𝑠+𝑘(𝛽) + 𝜎𝑠+𝑘(𝛼)𝜎𝑠+𝑘(𝛽)
= 2[Re(𝜎𝑠+𝑘(𝛼))Re(𝜎𝑠+𝑘(𝛽)) + Im(𝜎𝑠+𝑘(𝛼))Im(𝜎𝑠+𝑘(𝛽))].

So in ℂ𝑛 the inner product is

⟨𝛼, 𝛽⟩ =
𝑛
∑
𝑘=1

𝜎𝑘(𝛼)𝜎𝑘(𝛽) =
𝑠
∑
𝑘=1

𝜎𝑘(𝛼)𝜎𝑘(𝛽) + 2
𝑡/2
∑
𝑘=1

Re(𝜎𝑠+𝑘(𝛼))Re(𝜎𝑠+𝑘(𝛽)) + Im(𝜎𝑠+𝑘(𝛼))Im(𝜎𝑠+𝑘(𝛽)).

The same is true for the ℝ𝑛 embedding. Furthermore, notice that

(
1−𝑖
2

1+𝑖
21+𝑖

2
1−𝑖
2

) ( 𝜎𝑠+𝑘(𝛼)
𝜎𝑛+1−𝑘(𝛼)

) = (Re(𝜎𝑠+𝑘(𝛼)) + Im(𝜎𝑠+𝑘(𝛼))
Re(𝜎𝑠+𝑘(𝛼)) − Im(𝜎𝑠+𝑘(𝛼))

) , det(
1−𝑖
2

1+𝑖
21+𝑖

2
1−𝑖
2

) = −𝑖.
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So for any 𝛼1,⋯ , 𝛼𝑛, if 𝜶𝑖 is the embedding of 𝛼 in ℂ𝑛 and 𝜶′𝑖 is its embedding in ℝ𝑛 then

||det [𝜶1 ⋯ 𝜶𝑛]|| = ||det [𝜶′1 ⋯ 𝜶′𝑛]|| .

Now let 𝜔1,⋯ , 𝜔𝑛 be 𝑛 elements in 𝐾. We define

𝐌 = (
𝜎1(𝜔1) ⋯ 𝜎1(𝜔𝑛)
⋮ ⋱ ⋮

𝜎𝑛(𝜔1) ⋯ 𝜎𝑛(𝜔𝑛)
) , Δ(𝜔1,⋯ , 𝜔𝑛) = (det𝐌)2.

Notice that
(det𝐌)2 = det𝐌𝐌⊤ = det𝐓

where

𝑡𝑖𝑗 =
𝑛
∑
𝑘=1

𝜎𝑘(𝜔𝑖)𝜎𝑘(𝜔𝑗) =
𝑛
∑
𝑘=1

𝜎𝑘(𝜔𝑖𝜔𝑗) = T(𝜔𝑖𝜔𝑗) ∈ ℚ.

Thus Δ(𝜔1,⋯ , 𝜔𝑛) is a real number, and |Δ(𝜔1,⋯ , 𝜔𝑛)| is the square of the volume of the fundamental paral-
lelepiped of the lattice with basis 𝜔1,⋯𝜔𝑛, when they are embedded into ℝ𝑛 as explained above.

Lemma 56. If 𝜔1,⋯ , 𝜔𝑛 are algebraic integers, then Δ(𝜔1,⋯ , 𝜔𝑛) is an integer.

Proof : Jarvis (2014, Corollary 3.20, p. 48). Notice that each 𝑡𝑖𝑗 is an integer, by Lemma 54. □

Let 𝛼1,⋯ , 𝛼𝑛 be a basis of the vector space 𝐾. By Lemma 48, we may scale each 𝛼𝑖 by an integer 𝑘𝑖, so that each
𝛽𝑖 = 𝑘𝑖𝛼𝑖 is an algebraic integer. Since sums of algebraic integers are still algebraic integers, each expression of the
form

𝑞1𝛽1 +⋯+ 𝑞𝑛𝛽𝑛
where 𝑞1,⋯ , 𝑞𝑛 ∈ ℤ is an algebraic integer. However, it is not guaranteed that all algebraic integers can be ex-
pressed this way. Notice that if 𝛼 is an algebraic integer, then 𝛼𝛽𝑖 is also an algebraic integer, and so T(𝛼𝛽𝑖) ∈ ℤ.
Each T(𝛼𝛽𝑖) is a linear function of 𝛼. Therefore, we can find 𝛿1,⋯ , 𝛿𝑛 ∈ 𝐾 such that

T(𝛿𝑖𝛽𝑗) = {1 (𝑖 = 𝑗)
0 (𝑖 ≠ 𝑗)

.

Then it is evident that every algebraic integer can be expressed as 𝑞1𝛿1+⋯+𝑞𝑛𝛿𝑛, but it is not guaranteed that all
such expressions are algebraic integers. Thus ℤ𝐾 is “sandwiched” between two lattices 𝐿, 𝐿′, where 𝐿 is generated
by 𝛽1,⋯ , 𝛽𝑛 and 𝐿′ is generated by 𝛿1,⋯ , 𝛿𝑛.

We can check whether 𝐿 contains all algebraic integers by checking each equivalence class of 𝐿′/𝐿. Suppose that
we have found some 𝛼 ∈ ℤ𝐾 such that 𝛼 ∉ 𝐿. We can still express 𝛼 as a linear combination

𝛼 = 𝑟1𝛽1 +⋯+ 𝑟𝑛𝛽𝑛

but some 𝑟𝑖 will be in ℚ ⧵ ℤ. Without loss of generality, suppose that 𝑟1 ∈ ℚ ⧵ ℤ. Let 𝑘 = ⌊𝑟1⌋. Replace 𝛽1 with
𝛼 − 𝑘𝛽1. Then

|Δ(𝛽′1, 𝛽2,⋯ , 𝛽𝑛)| = (𝑟1 − 𝑘)2|Δ(𝛽1,⋯ , 𝛽𝑛)| < |Δ(𝛽1,⋯ , 𝛽𝑛)|.

But |Δ(𝛽1,⋯ , 𝛽𝑛)| is always a positive integer and cannot decrease infinitely. Thus after a finite number of steps we
obtain 𝛽1,⋯ , 𝛽𝑛 ∈ ℤ𝐾 such that all algebraic integers can be expressed as integral combinations of these elements.
We say 𝛽1,⋯ , 𝛽𝑛 is an integral basis of ℤ𝐾 .
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If 𝛽1,⋯ , 𝛽𝑛 and 𝛽′1,⋯ , 𝛽′𝑛 are two integral bases of ℤ𝐾 , then we must have |Δ(𝛽1,⋯ , 𝛽𝑛)| = |Δ(𝛽′1,⋯ , 𝛽′𝑛)|. The
determinant is called the discriminant of ℤ𝐾 .

5.6 Ideals

Definition 57. An ideal ℐ of ℤ𝐾 is a subset of ℤ𝐾 such that:

1. 0 ∈ ℐ;

2. If 𝛼, 𝛽 ∈ ℐ then 𝛼 + 𝛽 ∈ ℐ;

3. If 𝛼 ∈ ℐ, 𝛽 ∈ ℤ𝐾 then 𝛼𝛽 ∈ ℐ.

Remark 58. The singleton set ℐ = {0} is an ideal of ℤ𝐾 . Also, ℤ𝐾 is an ideal of itself. A non-zero ideal is an ideal
that contains at least one non-zero element. A proper ideal is an ideal that is a proper subset of ℤ𝐾 .

Definition 59. For a given 𝛼 ∈ ℤ𝐾 , the set ℐ = {𝛼𝛽 | 𝛽 ∈ ℤ𝐾} is an ideal. We call it the principal ideal generated by
𝛼 and denote it by ⟨𝛼⟩.

Remark 60. For a given non-zero ideal ℐ, let 𝛼 be any non-zero element of ℐ. Then 𝛼, 𝛼𝛾,⋯ , 𝛼𝛾𝑛−1 are linearly
independent elements of ℐ. Therefore, ℐ is a sublattice of ℤ𝐾 . It is called an ideal lattice. This does not mean every
element in ℐ can be written as 𝛼 ⋅𝛽 for some 𝛽 ∈ ℤ𝐾 . We still need to follow the procedure described earlier to find
an integral basis for ℐ.

Definition 61. Let ℐ, 𝒥 be two ideals of ℤ𝐾 .

1. ℐ + 𝒥 = {𝛼 + 𝛽 | 𝛼 ∈ ℐ, 𝛽 ∈ 𝒥};

2. ℐ𝒥 = {𝛼1𝛽1 + 𝛼2𝛽2 +⋯+ 𝛼𝑘𝛽𝑘 | 𝑘 ∈ ℕ, 𝛼𝑖 ∈ ℐ, 𝛽𝑖 ∈ 𝒥}.

Remark 62. If ℐ, 𝒥,𝒦 are three ideals such that ℐ ⊆ 𝒥, then ℐ𝒦 ⊆ 𝒥𝒦.

Remark 63. It is easy to see that ℐ𝒥 ⊆ ℐ ∩ 𝒥. In general it is not true that ℐ𝒥 = ℐ ∩ 𝒥. However, if ℐ, 𝒥 are coprime,
i.e. ℐ + 𝒥 = ℤ𝐾 , then ℐ𝒥 = ℐ ∩ 𝒥.

If ℐ + 𝒥 = ℤ𝐾 , then there exists 𝑥 ∈ ℐ, 𝑦 ∈ 𝒥 such that 𝑥 + 𝑦 = 1. Then for every 𝑐 ∈ ℐ ∩ 𝒥 we have 𝑐 = 𝑐(𝑥 + 𝑦) =
𝑐𝑥 + 𝑐𝑦 ∈ ℐ𝒥.

Definition 64. An proper ideal ℐ is prime if for every 𝛼, 𝛽 ∈ ℤ𝐾 , if 𝛼𝛽 ∈ ℐ then 𝛼 ∈ ℐ ∨ 𝛽 ∈ ℐ.

Remark 65. An alternative characterization of prime ideals (Jarvis, 2014, Lemma 5.13, p. 96) is as follows. An ideal
𝒦 is a prime ideal iff whenever ℐ𝒥 ⊆ 𝒦, then ℐ ⊆ 𝒦 ∨ 𝒥 ⊆ 𝒦.

Suppose that𝒦 is prime and ℐ𝒥 ⊆ 𝒦. If neither ℐ ⊆ 𝒦 nor 𝒥 ⊆ 𝒦 holds, then there exists 𝛼 ∈ ℐ, 𝛽 ∈ 𝒥 such that
𝛼, 𝛽 ∉ 𝒦. However 𝛼𝛽 ∈ ℐ𝒥 and so 𝛼𝛽 ∈ 𝒦. Because𝒦 is prime, either 𝛼 ∈ 𝒦 or 𝛽 ∈ 𝒦, which is a contradiction.

Suppose that 𝒦 is not prime. Then there exists 𝛼, 𝛽 ∉ 𝒦 such that 𝛼𝛽 ∈ 𝒦. Then we have neither ⟨𝛼⟩ ⊆ 𝒦 nor
⟨𝛽⟩ ⊆ 𝒦. However we have ⟨𝛼⟩⟨𝛽⟩ = ⟨𝛼𝛽⟩ ⊆ 𝒦.

Definition 66. A proper ideal ℐ ismaximal if ℐ is not a subset of any other proper ideal.

Remark 67. If ℐ is an ideal and 𝛽 ∈ ℤ𝐾 then ℐ′ = ℐ + ⟨𝛽⟩ is an ideal. If 𝛽 ∉ ℐ then ℐ′ is strictly larger than ℐ. If ℐ
is maximal, then ℐ′ cannot be a proper ideal, so ℐ′ = ℤ𝐾 and 1 ∈ ℐ′.

As such, if ℐ is maximal, then for each 𝛽 ∉ ℐ we can find 𝛿 ∈ ℤ𝐾 such that 𝛽𝛿 + 𝛼 = 1 for some 𝛼 ∈ ℐ. Note that
this implies 𝛿 ∉ ℐ. Otherwise, 1 ∈ ℐ and ℐ = ℤ𝐾 . This is usually formulated as: if ℐ is maximal then ℤ𝐾/ℐ is a field.
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Conversely, if ℤ𝐾/ℐ is a field, i.e. for each 𝛽 ∉ ℐ there exists 𝛿 ∈ ℤ𝐾 such that 𝛽𝛿 + 𝛼 = 1 for some 𝛼 ∈ ℐ, then any
ideal ℐ′ that is strictly larger than ℐ must contain 1 and so ℐ′ = ℤ𝐾 . As such ℐ is maximal.

Remark 68. Amaximal ideal is always prime. Suppose that ℐ ismaximal but not prime. Then there exists 𝛽, 𝛿 ∈ ℤ𝐾
such that 𝛽, 𝛿 ∉ ℐ but 𝛽𝛿 ∈ ℐ. Find 𝛽′ such that 𝛽𝛽′ + 𝛼 = 1 for some 𝛼 ∈ ℐ. Then 𝛽𝛽′𝛿 = 𝛿 − 𝛼𝛿 ∈ ℐ, but then
𝛿 ∈ ℐ which is a contradiction.

The converse is not true in general. However, in algebraic number rings it is true.

Lemma 69. Every non-zero prime ideal of ℤ𝐾 is maximal.

Proof : Jarvis (2014, Proposition 5.21, p. 98). Notice that every ideal ℐ of ℤ𝐾 is a sublattice of ℤ𝐾 . By Lemma 10,
ℤ𝐾/ℐ has only a finite number of equivalence classes. For a given prime ideal ℐ and 𝛼 ∉ ℐ, consider the sequence
𝛼, 𝛼2,⋯. By induction we see that each 𝛼𝑘 is not in ℐ. Eventually we can find 𝑗 < 𝑘 such that 𝛼𝑗 and 𝛼𝑘 that belong
to the same equivalence class in ℤ𝐾/ℐ. Then we have 𝛼𝑗(1 − 𝛼𝑘−𝑗) ∈ ℐ. Since 𝛼𝑗 ∉ ℐ, we must have 1 − 𝛼𝑘−𝑗 ∈ ℐ.
Thus 𝛼 ⋅ 𝛼𝑘−𝑗−1 = 1 in ℤ𝐾/ℐ. Hence ℤ𝐾/ℐ is a field, and ℐ is maximal. □

Definition 70. A fractional ideal ℐ of ℤ𝐾 is a subset of 𝐾 such that 𝒥 = 𝛼ℐ is an ideal of ℤ𝐾 for some non-zero
𝛼 ∈ ℤ𝐾 . We may write ℐ = 𝒥/𝛼.

Remark 71. Fractional ideals may contain elements of 𝐾 that are not in ℤ𝐾 . Therefore, in general they are not
ideals of ℤ𝐾 . Fractional ideals can be seen as lattices in the ℝ𝑛 space, but they are not sublattices of ℤ𝐾 .

Remark 72. Addition and multipliation of ideals can be extended to fractional ideals in the following natural way:

ℐ/𝛼 + 𝒥/𝛽 = (𝛽ℐ + 𝛼𝒥)/(𝛼𝛽), ℐ/𝛼 ⋅ 𝒥/𝛽 = ℐ𝒥/(𝛼𝛽).

Lemma 73. If ℐ, 𝒥 are two ideals with ℐ ⊆ 𝒥, and𝒦 is a fractional ideal, then ℐ𝒦 ⊆ 𝒥𝒦.

Proof : Suppose that𝒦 = 𝒦′/𝛼, then ℐ𝒦 = ℐ𝒦′/𝛼 and 𝒥𝒦 = 𝒥𝒦′/𝛼. Then it is sufficient to notice that ℐ𝒦′ ⊆ 𝒥𝒦′.
□

Lemma 74. If a fractional ideal ℐ is a subset of an ideal 𝒥, then ℐ is an ideal.

Proof : We have ℐ ⊆ 𝒥 ⊆ ℤ𝐾 . It is straightforward to check that ℐ satisfies other requirements of an ideal. □

Lemma 75. If ℐ is a non-zero ideal of ℤ𝐾 , then

ℐ−1 = {𝛼 ∈ 𝐾 | 𝛼ℐ ⊆ ℤ𝐾}

is a fractional ideal, and ℐℐ−1 = ℤ𝐾 .

Proof : Jarvis (2014, Lemma 5.25, Lemma 5.28, Lemma 5.29, pp. 100–101). □

Theorem 76 (Unique Factorization of Ideals). Every non-zero proper ideal of ℤ𝐾 can uniquely written as a product
of prime ideals of ℤ𝐾 .

Proof : Jarvis (2014, Lemma 5.31, Theorem 5.32, p. 102). □

Lemma 77. Let ℐ, 𝒥 be two non-zero ideals of ℤ𝐾 . Then ℐ ⊆ 𝒥 iff there exists an ideal𝒦 such that ℐ = 𝒥𝒦.

Proof : If 𝒥 = ℤ𝐾 then the proposition is trivial, because every ℐ satisfies ℐ ⊆ ℤ𝐾 , and also satisfies ℐ = ℤ𝐾ℐ. Also,
if ℐ = 𝒥𝒦 then it is easy to see that ℐ ⊆ 𝒥.
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Hence assume 𝒥 is a proper ideal and ℐ ⊆ 𝒥. By Theorem 76, 𝒥 can be written as

𝒥 = 𝔭𝑎11 ⋯𝔭𝑎𝑘𝑘

where 𝔭𝑖 are prime ideals and 𝑎𝑖 are positive integers. We shall do induction on 𝑎1 +⋯+ 𝑎𝑘.

The base case is that 𝒥 is a prime ideal. Consider the factorization of ℐ:

ℐ = 𝔮𝑏11 ⋯𝔮𝑏𝑙𝑘

By Remark 65, at least one factor 𝔮𝑖 is a subset of 𝒥. However, by Lemma 69, 𝔮𝑖 is maximal, so 𝔮𝑖 = 𝒥 and we take
𝒦 to be the other factors of ℐ.

In the inductive case, we have 𝒥 = 𝒥′𝔭 such that 𝑝 is a prime ideal. The reasoning is similar to the base case. The
ideal ℐ must have a prime factor equal to 𝔭. By Lemma 73, ℐ ⊆ 𝒥 implies ℐ𝔭−1 ⊆ 𝒥𝔭−1 = 𝒥′. By Lemma 74, ℐ𝔭−1 is
an ideal. Now 𝒥′ has one less prime factor than 𝒥, and the induction hypothesis applies. □

By Lemma 77, ℐ is a multiple of 𝒥, or 𝒥 divides ℐ, iff ℐ ⊆ 𝒥. Thus ideal divisibility is equivalent to reverse contain-
ment.

Remark 78. If 𝔭 is a prime ideal, then by Lemma 69 we see that ℤ𝐾/𝔭 is a finite field. A finite field always has a
positive characteristic 𝑝, and we must have 𝑝 ∈ 𝔭. Then we have ⟨𝑝⟩ ⊆ 𝔭, so 𝔭 divides ⟨𝑝⟩. Conversely, if 𝔭 is a
factor of ⟨𝑝⟩, then ⟨𝑝⟩ ⊆ 𝔭 and 𝑝 ∈ 𝔭. A proper ideal cannot contain two prime numbers, otherwise 1 ∈ 𝔭 and so
𝔭 = ℤ𝐾 . Hence, all factors of ⟨𝑝⟩ have characteristic 𝑝. This shows that, to understand the prime ideals in ℤ𝐾 , it is
sufficient to understand how each principal ideal ⟨𝑝⟩ factors in ℤ𝐾 .

Lemma 79. Let ℐ, 𝒥 be two non-zero ideals. Suppose that

ℐ = 𝔭𝑎11 ⋯𝔭𝑎𝑘𝑘 , 𝒥 = 𝔭𝑏11 ⋯𝔭𝑏𝑘𝑘

where 𝔭𝑖 are prime ideals and 𝑎𝑖, 𝑏𝑖 ∈ ℕ. Note that we allow 𝑎𝑖, 𝑏𝑖 to be 0, so ℐ, 𝒥 can still have distinct prime ideal
factors. The case where all exponents are 0 corresponds to ℤ𝐾 . Then we have

ℐ + 𝒥 = 𝔭min(𝑎1,𝑏1)
1 ⋯𝔭min(𝑎𝑘,𝑏𝑘)

𝑘 .

In other words, ℐ + 𝒥 is the “greatest common denominator” of ℐ and 𝒥.

Proof : Let 𝒦 = 𝔭min(𝑎1,𝑏1)
1 ⋯𝔭min(𝑎𝑘,𝑏𝑘)

𝑘 and write ℐ = ℐ′𝒦, 𝒥 = 𝒥′𝒦, so that ℐ′, 𝒥′ have no common prime ideal
factors. It is sufficient to prove that ℐ′ + 𝒥′ = ℤ𝐾 . If not, then ℐ′ + 𝒥′ has a prime ideal factor 𝔮. But then ℐ′ ⊆
ℐ′ + 𝒥′ ⊆ 𝔮. Similarly, 𝒥′ ⊆ 𝔮. This contradicts that ℐ′, 𝒥′ have no common prime ideal factors. □

Lemma 80. Similar to Lemma 79, we also have the “least common multiple”

ℐ ∩ 𝒥 = 𝔭max(𝑎1,𝑏1)
1 ⋯𝔭max(𝑎𝑘,𝑏𝑘)

𝑘 .

Proof : Analogous to Lemma 79. See Remark 63. □

Definition 81. Let 𝐿 be the lattice of algebraic integers. Let ℐ be a non-zero ideal or fractional ideal of ℤ𝐾 . Let 𝐿′
be the lattice associated to ℐ. The norm of ℐ, denoted by N(ℐ), is defined to be |𝐿/𝐿′| = |𝑑(𝐿′)/𝑑(𝐿)|.

Lemma 82. For any 𝛼 ∈ ℤ𝐾 with 𝛼 ≠ 0 we have N(⟨𝛼⟩) = |N(𝛼)|.
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Proof : Jarvis (2014, Lemma 5.35, p. 104). □

Lemma 83. For any non-zero ideal or fractional ideal ℐ of ℤ𝐾 , let 𝐿 be the lattice associated to ℐ, then |𝑑(𝐿)| =
N(ℐ) ⋅ √|Δ| where Δ is the discriminant of ℤ𝐾 .

Proof : Immediate from the definition of N(ℐ) and Δ. □

Lemma 84. For any two non-zero ideals or fractional ideals ℐ, 𝒥 of ℤ𝐾 we have N(ℐ𝒥) = N(ℐ)N(𝒥).

Proof : Jarvis (2014, Lemma 5.36, Lemma 5.37, pp. 104–105). The extension to fractional ideals is straightforward.
□

Remark 85. If 𝑝 is a prime number and 𝔭 is a prime ideal with 𝑝 ∈ 𝔭, then ℤ𝐾/𝔭 is a finite field with characteristic
𝑝. In this case we have N(𝔭) = 𝑝𝑓 for some positive integer 𝑓, and 𝑓 is called the inertial degree of 𝔭.

We are now ready to state how each principal ideal ⟨𝑝⟩ factors in ℤ𝐾 . The theorem below applies only when ℤ𝐾 =
ℤ[𝛾]. This special case is sufficient for understanding Lyubashevsky et al. (2013). The more general case requires
the theory of the “conductor” ideal and is detailed in Conrad ([n. d.]).

Theorem 86. Recall that 𝑃(𝑋) is theminimal polynomial of 𝛾. Since we assumeℤ𝐾 = ℤ[𝛾], 𝛾 is an algebraic integer
so 𝑃(𝑋) contains only integer coefficients. Let 𝑝 be a prime, and let 𝑃(𝑋) be the factorization of 𝑃(𝑋) in 𝔽𝑝:

𝑃(𝑋) = 𝑃1(𝑋)𝑒1 ⋯𝑃𝑘(𝑋)𝑒𝑘 .

Then there exists distinct prime ideals 𝔭1,⋯ , 𝔭𝑘 of ℤ𝐾 such that

⟨𝑝⟩ = 𝔭𝑒11 ⋯𝔭𝑒𝑘𝑘 ,

and the inertial degree of 𝔭𝑖 is deg𝑃𝑖(𝑋).

Proof : Jarvis (2014, Proposition 5.42, p. 109). □

Remark 87. From the factorization we see that

𝑛 = deg𝑃(𝑋) = deg𝑃(𝑋) =
𝑘
∑
𝑖=1

𝑒𝑖 ⋅ deg𝑃𝑖(𝑋).

This is true in general. See Jarvis (2014, Theorem 5.41, p. 108).

5.7 The Cyclotomic Fields

Definition 88. Let 𝑚 be a positive integer. An 𝑚-th root of unity is a solution to the equation 𝜁𝑚 = 1 in ℂ. In fact,
𝜁 = 𝑒2𝜋𝑖𝑘/𝑚 for 𝑘 = 0, 1, 2,…

Definition 89. An𝑚-th root of unity is primitive if 𝜁𝑘 ≠ 1 for any 1 ≤ 𝑘 < 𝑚. This corresponds to 𝜁 = 𝑒2𝜋𝑖𝑘/𝑚 for 𝑘
coprime to𝑚.

Definition 90. The 𝑚-th cyclotomic polynomial Φ𝑚(𝑋) is the irreducible polynomial whose roots are the 𝑚-th
primitive roots of unity:

Φ𝑚(𝑋) = ∏
𝑘 coprime to𝑚

(𝑋 − 𝑒2𝜋𝑖𝑘/𝑚).

The degree of Φ𝑚(𝑋) is 𝑛 = 𝜑(𝑚).



Regularity Lemma 30

Let 𝐾𝑚 = ℚ[𝑋]/Φ𝑚(𝑋). The results we need about 𝐾𝑚 and ℤ𝐾𝑚 are:

Lemma 91. ℤ𝐾𝑚 = ℤ[𝜁] where 𝜁 is any𝑚-th primitive root of unity.

Proof : Neukirch (1999, Proposition 10.2, p. 60). □

Lemma 92. The discriminant of ℤ𝐾𝑚 is

Δ𝐾𝑚 = ( 𝑚
∏prime 𝑝|𝑚 𝑝1/(𝑝−1))

𝑛

≤ 𝑛𝑛.

Proof : Shurman ([n. d.]). □

Lemma 93. Let 𝑝 be a prime number. The factoring of principal ideal ⟨𝑝⟩ in ℤ𝐾𝑚 is as follows. Let 𝑟𝑝 be the largest
integer such that 𝑚 is a multiple of 𝑝𝑟𝑝 . Let 𝑓𝑝 be the smallest positive integer such that 𝑝𝑓𝑝 ≡ 1 mod 𝑚/𝑝𝑟𝑝 . Let
𝑑 = 𝑛/[𝑓𝑝 ⋅ 𝜑(𝑝𝑟𝑝)]. Then we have

⟨𝑝⟩ = (𝔭1⋯𝔭𝑑)𝜑(𝑝
𝑟𝑝 )

for some distinct prime ideals 𝔭1,⋯ , 𝔭𝑑, each having norm 𝑝𝑓𝑝 .

Proof : Neukirch (1999, Proposition 10.3, p. 61). □

6 The Regularity Lemma

We now have all necessary background information to state and prove the regularity lemma. Let𝑚 be an integer
with𝑚 ≥ 3 and 𝑛 = 𝜑(𝑚). Let 𝐾 be the𝑚-th cyclotomic field, and let 𝑅 = ℤ[𝜁] be its ring of algebraic integers. Let
𝑞 be an integer. Let 𝑅𝑞 be the subset of 𝑅with the coefficient of each 𝜁𝑖 within [0, 𝑞−1]. If 𝑎, 𝑏 are positive integers,
let 𝑅[𝑎] be the set of vectors of length 𝑎with entries in 𝑅, and 𝑅[𝑎]×[𝑏] be the set of matrices of size 𝑎×𝑏with entries
in 𝑅. Similarly, 𝑅[𝑎]𝑞 is the set of vectors of length 𝑎with entries in 𝑅𝑞, and 𝑅[𝑎]×[𝑏]𝑞 is the set of matrices of size 𝑎×𝑏
with entries in 𝑅𝑞. Let𝒟𝑠 be a discrete Gaussian distribution on 𝑅 with density

𝒟𝑠(𝑥) =
exp(−𝜋||𝑥||2/𝑠2)

∑𝑥∈𝑅 exp(−𝜋||𝑥||2/𝑠2)

where ||𝑥||means the length of 𝑥 under the canonical embedding into ℝ𝑛.

Let 𝑘, 𝑙 be two positive integers with 𝑘 ≤ 𝑙 < 2𝑛. The regularity lemma states: let 𝐀 is a matrix uniformly random
in 𝑅[𝑘]×[𝑙−𝑘]𝑞 , let 𝐀 = [𝐈𝑘|𝐀], let 𝐱 be a vector in 𝑅[𝑙]𝑞 with each component sampled from 𝑅 according to𝒟𝑠(𝑥) with
𝑠 > 2𝑛 ⋅ 𝑞𝑘/𝑙+2/(𝑛𝑙) and reduced by 𝑞𝑅, then 𝐀𝐱 mod 𝑞𝑅 is almost uniformly random over 𝑅[𝑘]𝑞 .

Proof of regularity lemma: For any matrix 𝐀 ∈ 𝑅[𝑘]×[𝑙−𝑘]𝑞 , let 𝐀 = [𝐈𝑘|𝐀]. Define the set

Λ⊥(𝐀) = {𝐳 ∈ 𝑅[𝑙] | 𝐀𝐳 = 𝟎 mod 𝑞𝑅}.

For any 𝐳 ∈ 𝑅[𝑙] we have𝐀(𝑞𝐳) = 𝑞𝐀𝐳 = 𝟎 mod 𝑞𝑅. ThereforeΛ⊥(𝐀) is a lattice of rank 𝑛𝑙. The idea of the proof is
to estimate the smoothing factor of Λ⊥(𝐀). If 𝑠 > 𝜂𝜀(Λ⊥(𝐀)), then as the components of 𝐳 are sampled according to
𝒟𝑠, the probability of 𝐳 falling into each equivalence class of 𝑅[𝑙]/Λ⊥(𝐀) should be roughly uniform. Also, since 𝐀
has full rank, the number of equivalence classes of 𝐳 satisfying 𝐀𝐳 = 𝐭 mod 𝑞𝑅 for each 𝐭 ∈ 𝑅[𝑘]𝑞 should be equal.
Together, we get an almost uniform distribution of 𝐀𝐳 mod 𝑞𝑅.
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Suppose that 𝐳 ∈ Λ⊥(𝐀). Let 𝐳⊤ = [𝐳⊤1 | 𝐳⊤2 ]where 𝐳1 ∈ 𝑅[𝑘] and 𝐳2 ∈ 𝑅[𝑙−𝑘]. Then𝐀𝐳 = 𝐳1+𝐀𝐳2 ∈ 𝑞𝑅[𝑘]. Suppose
that 𝐀𝐳 = 𝑞𝐳3. Then 𝐳1 = 𝑞𝐳3 − 𝐀𝐳2. As such, we have

Λ⊥(𝐀) = {[𝑞𝐳3 − 𝐀𝐳2
𝐳2

] ||| 𝐳2 ∈ 𝑅[𝑙−𝑘], 𝐳3 ∈ 𝑅[𝑘]} .

Suppose that 𝐲 ∈ Λ⊥(𝐀)∗. Let 𝐲⊤ = [𝐲⊤1 | 𝐲⊤2 ] where 𝐲1 ∈ 𝑅[𝑘], 𝐲2 ∈ 𝑅[𝑙−𝑘]. By definition, for each 𝐳 ∈ Λ⊤(𝐀) we
have

⟨𝐲, 𝐳⟩ = ⟨𝐲1, 𝑞𝐳3 − 𝐀𝐳2⟩ + ⟨𝐲2, 𝐳2⟩ = 𝑞 ⋅ ⟨𝐲1, 𝐳3⟩ − ⟨𝐀
⊤
𝐲1, 𝐳2⟩ + ⟨𝐲2, 𝐳2⟩ ∈ ℤ.

First, suppose that 𝐳2 = 𝟎. This means for any 𝐳3 ∈ 𝑅[𝑘] we have ⟨𝑞𝐲1, 𝐳3⟩ ∈ ℤ. Hence 𝐲1 ∈
1
𝑞
(𝑅[𝑘])

∗
= 1

𝑞
(𝑅∗)[𝑘],

where 𝑅∗ is the dual lattice of 𝑅 and is a fractional ideal. Next, suppose that 𝐳3 = 𝟎, then for any 𝐳2 ∈ 𝑅[𝑙−𝑘] we

have ⟨𝐲2 − 𝐀
⊤
𝐲1, 𝐳2⟩ ∈ ℤ. Therefore 𝐲2 − 𝐀

⊤
𝐲1 ∈ (𝑅∗)[𝑙−𝑘]. Hence, Λ⊥(𝐀)∗ can be represented as

Λ⊥(𝐀)∗ = {[
𝐲3/𝑞

𝐲4 + 𝐀
⊤
𝐲3/𝑞

]
||||
𝐲3 ∈ (𝑅∗)[𝑘], 𝐲4 ∈ (𝑅∗)[𝑙−𝑘]} .

Now each 𝐲3 ∈ (𝑅∗)[𝑘] can be uniquely written as 𝐲3 = 𝐲5 + 𝐲6 with 𝐲5 ∈ (𝑞𝑅∗)[𝑘] and 𝐲6 ∈ (𝑅∗𝑞)[𝑘]. Now
[𝐲⊤5 /𝑞 | 𝐲⊤4 + 𝐲⊤5 𝐀/𝑞] ∈ (𝑅∗)[𝑙]. Therefore

Λ⊥(𝐀)∗ = (𝑅∗)[𝑙] + 1
𝑞𝐀

⊤(𝑅∗𝑞)[𝑘].

We now estimate the value of 𝜌1/𝑠 (Λ⊥(𝐀)∗) for a uniformly random 𝐀.

𝔼𝐴 [𝜌1/𝑠 (Λ⟂(𝐀)∗)] =
1

𝑞𝑛𝑘(𝑙−𝑘) ∑
𝐴

∑
𝐯∈(𝑅∗𝑞)[𝑘]

𝜌1/𝑠 ((𝑅∗)[𝑙] +
1
𝑞𝐀

⊤𝐯)

= 1
𝑞𝑛𝑘(𝑙−𝑘) ∑

𝐮∈(𝑅∗)[𝑙]
∑

𝐯∈(𝑅∗𝑞)[𝑘]
∑
𝐴
𝑒−𝜋𝑠2||𝐮+𝐀⊤𝐯/𝑞||2

= 1
𝑞𝑛𝑘(𝑙−𝑘) ∑

𝐮1∈(𝑅∗)[𝑘]
∑

𝐮2∈(𝑅∗)[𝑙−𝑘]
∑

𝐯∈(𝑅∗𝑞)[𝑘]
∑
𝐴
𝑒−𝜋𝑠2||𝐮1+𝐯/𝑞||2 𝑒−𝜋𝑠2||𝐮2+𝐀

⊤
𝐯/𝑞||2

= 1
𝑞𝑛𝑘(𝑙−𝑘) ∑

𝐮1∈(𝑅∗)[𝑘]
∑

𝐯∈(𝑅∗𝑞)[𝑘]
(𝑒−𝜋𝑠2||𝐮1+𝐯/𝑞||2 ∑

𝐮2∈(𝑅∗)[𝑙−𝑘]
∑
𝐴
𝑒−𝜋𝑠2||𝐮2+𝐀

⊤
𝐯/𝑞||2) .

Because each component of 𝐮2 + 𝐀
⊤
𝐯/𝑞 varies independently during summation, we have

∑
𝐮2∈(𝑅∗)[𝑙−𝑘]

∑
𝐴
𝑒−𝜋𝑠2||𝐮2+𝐀

⊤
𝐯/𝑞||2 = ( ∑

𝑢∈𝑅∗
∑

𝐚∈𝑅[𝑘]𝑞

𝑒−𝜋𝑠2||𝑢+⟨𝐚,𝐯⟩/𝑞||2)

𝑙−𝑘

.

Suppose that 𝐯 = (𝑣1,⋯ , 𝑣𝑘). Define ℐ𝐯 = 𝑣1𝑅 + ⋯ + 𝑣𝑘𝑅 + 𝑞𝑅∗. It is a fractional ideal, the “greatest common
denominator” of 𝑣1𝑅,⋯ , 𝑣𝑘𝑅 and 𝑞𝑅∗. We have ⟨𝐚, 𝐯⟩ + 𝑞𝑢 ∈ ℐ𝐯.

Since 𝑣1,⋯ , 𝑣𝑘 ∈ 𝑅∗, we have 𝑞𝑅∗ ⊆ ℐ𝐯 ⊆ 𝑅∗. Consider the quotient ℐ𝐯/𝑞𝑅∗. By the definition of ℐ𝐯, for each
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equivalence class in ℐ𝐯/𝑞𝑅∗ there exists at least one 𝐚 ∈ 𝑅[𝑘]𝑞 such that ⟨𝐚, 𝐯⟩ belongs to this class. Also, suppose
that for a given equivalence class, there exists two vectors 𝐚1, 𝐚2 ∈ 𝑅[𝑘]𝑞 such that ⟨𝐚, 𝐯⟩ falls into this class, then
⟨𝐚1 − 𝐚2, 𝐯⟩ ∈ 𝑞𝑅∗. Hence, for any other vector 𝐚3 ∈ 𝑅[𝑘]𝑞 , ⟨𝐚3, 𝐯⟩ and ⟨𝐚3 + (𝐚1 − 𝐚2) mod 𝑞𝑅, 𝐯⟩ must also belong
to the same equivalence class. We conclude that as 𝐚 varies over 𝑅[𝑘]𝑞 uniformly, ⟨𝐚, 𝐯⟩ also varies over ℐ𝐯/𝑞𝑅∗
uniformly. Hence we have

∑
𝑢∈𝑅∗

∑
𝐚∈𝑅[𝑘]𝑞

𝑒−𝜋𝑠2||𝑢+⟨𝐚,𝐯⟩/𝑞||2 = 𝑞𝑛𝑘
|ℐ𝐯/𝑞𝑅∗|

⋅ 𝜌1/𝑠(ℐ𝐯/𝑞).

We see that

1
𝑞𝑛𝑘(𝑙−𝑘) ( ∑

𝑢∈𝑅∗
∑

𝐚∈𝑅[𝑘]𝑞

𝑒−𝜋𝑠2||𝑢+⟨𝐚,𝐯⟩/𝑞||2)

𝑙−𝑘

= (𝜌1/𝑠(ℐ𝐯/𝑞)|ℐ𝐯/𝑞𝑅∗|
)
𝑙−𝑘

.

We get

𝔼𝐴 [𝜌1/𝑠 (Λ⟂(𝐀)∗)] = ∑
𝐮1∈(𝑅∗)[𝑘]

∑
𝐯∈(𝑅∗𝑞)[𝑘]

𝑒−𝜋𝑠2||𝐮1+𝐯/𝑞||2 ⋅ (𝜌1/𝑠(ℐ𝐯/𝑞)|ℐ𝐯/𝑞𝑅∗|
)
𝑙−𝑘

= ∑
𝐯∈(𝑅∗𝑞)[𝑘]

𝜌1/𝑠 ((𝑅∗)[𝑘] + 𝐯/𝑞) ⋅ (𝜌1/𝑠(ℐ𝐯/𝑞)|ℐ𝐯/𝑞𝑅∗|
)
𝑙−𝑘

.

Let 𝑇 be the set of all fractional ideal ℐ of ℤ𝐾 such that 𝑞𝑅∗ ⊆ ℐ ⊆ 𝑅∗. This is a finite set. Let 𝑑 be an integer such
that 𝑑𝑅∗ is an ideal. Then 𝑞𝑑𝑅∗ ⊆ 𝑑ℐ, so 𝑑ℐ is factor of 𝑞𝑑𝑅∗. Simply iterate through the factors of 𝑞𝑑𝑅∗ and divide
each by 𝑑. We have

𝔼𝐴 [𝜌1/𝑠 (Λ⟂(𝐀)∗)] = ∑
ℐ∈𝑇

⎡
⎢
⎢
⎢
⎣

(𝜌1/𝑠(ℐ/𝑞)|ℐ/𝑞𝑅∗| )
𝑙−𝑘

∑
𝐯∈(𝑅∗𝑞)[𝑘]
ℐ𝐯=ℐ

𝜌1/𝑠 ((𝑅∗)[𝑘] + 𝐯/𝑞)
⎤
⎥
⎥
⎥
⎦

.

If 𝐯 = 𝟎 then it is clear that ℐ𝐯 = 𝑞𝑅∗. Conversely, suppose that ℐ𝐯 = 𝑞𝑅∗. Then each component 𝑣𝑖 of 𝐯 satisfies
𝑣𝑖 ∈ 𝑞𝑅∗. However, we have 𝑣𝑖 ∈ 𝑅∗𝑞, so 𝑣𝑖 = 0 and 𝐯 = 𝟎. Thus we can write 𝑇 = {𝑞𝑅∗} ∪ 𝑇 ′ where 𝑇 ′ is the set of
fractional ideals ℐ satisfying 𝑞𝑅∗ ⊊ ℐ ⊆ 𝑅∗. In the special case of ℐ = 𝑞𝑅∗ we have

(𝜌1/𝑠(ℐ/𝑞)|ℐ/𝑞𝑅∗| )
𝑙−𝑘

∑
𝐯∈(𝑅∗𝑞)[𝑘]
ℐ𝐯=ℐ

𝜌1/𝑠 ((𝑅∗)[𝑘] + 𝐯/𝑞) = 𝜌1/𝑠(𝑅∗)𝑙−𝑘 ⋅ 𝜌1/𝑠((𝑅∗)[𝑘]) = 𝜌1/𝑠(𝑅∗)𝑙.

So we have

𝔼𝐴 [𝜌1/𝑠 (Λ⟂(𝐀)∗)] = 𝜌1/𝑠(𝑅∗)𝑙 + ∑
ℐ∈𝑇′

⎡
⎢
⎢
⎢
⎣

(𝜌1/𝑠(ℐ/𝑞)|ℐ/𝑞𝑅∗| )
𝑙−𝑘

∑
𝐯∈(𝑅∗𝑞)[𝑘]
ℐ𝐯=ℐ

𝜌1/𝑠 ((𝑅∗)[𝑘] + 𝐯/𝑞)
⎤
⎥
⎥
⎥
⎦

.
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We can estimate the inner summation by assuming every 𝐯 ≠ 𝟎 with components in ℐ satisfy ℐ𝐯 = ℐ. We have

𝔼𝐴 [𝜌1/𝑠 (Λ⟂(𝐀)∗)] ≤ 𝜌1/𝑠(𝑅∗)𝑙 + ∑
ℐ∈𝑇′

[(𝜌1/𝑠(ℐ/𝑞)|ℐ/𝑞𝑅∗| )
𝑙−𝑘

(𝜌1/𝑠(ℐ/𝑞)𝑘 − 1)]

= 𝜌1/𝑠(𝑅∗)𝑙 + ∑
ℐ∈𝑇′

𝜌1/𝑠(ℐ/𝑞)𝑙 − 𝜌1/𝑠(ℐ/𝑞)𝑙−𝑘
|ℐ/𝑞𝑅∗|𝑙−𝑘

≤ 𝜌1/𝑠(𝑅∗)𝑙 + ∑
ℐ∈𝑇′

𝜌1/𝑠(ℐ/𝑞)𝑙 − 1
|ℐ/𝑞𝑅∗|𝑙−𝑘

= 1 + ∑
ℐ∈𝑇

𝜌1/𝑠(ℐ/𝑞)𝑙 − 1
|ℐ/𝑞𝑅∗|𝑙−𝑘 .

The value of 𝜌1/𝑠(ℐ/𝑞) can be estimated as follows. By the arithmetic-geometric inequality, for any element 𝑥 ∈ ℐ
we have

||𝑥||2 =
𝑛
∑
𝑖=1

|𝜎𝑖(𝑥)|2 ≥ 𝑛(
𝑛
∏
𝑖=1

|𝜎𝑖(𝑥)|)
2/𝑛

= 𝑛 ⋅ |N2/𝑛(𝑥)|.

We also have |N(𝑥)| = N(⟨𝑥⟩) ≥ N(ℐ) since ⟨𝑥⟩ ⊆ ℐ. Therefore

𝜆1(ℐ) ≥ √𝑛 ⋅ N1/𝑛(ℐ).

Scaling by 1/𝑞 gives us

𝜆1(ℐ/𝑞) ≥
√𝑛 ⋅ N1/𝑛(ℐ)

𝑞 .

The dual lattice of ℐ/𝑞 is 𝑞ℐ∗. By Lemma 38 we have

𝜂2−2𝑛(𝑞ℐ∗) ≤ 𝑞 ⋅ N−1/𝑛(ℐ).

By Lemma 39 we have
𝜌1/𝑠(ℐ/𝑞)𝑙 ≤ max (1, (N(ℐ)−1 ⋅ 𝑞𝑛 ⋅ 𝑠−𝑛)𝑙) (1 + 2−2𝑛)𝑙.

By the binomial theorem,

(1 + 2−2𝑛)𝑙 =
𝑙
∑
𝑘=0

( 𝑙𝑘) 2
−2𝑛𝑘.

By the inequality

( 𝑙𝑘) ≤ 2 ( 𝑙2)
𝑘

we get

(1 + 2−2𝑛)𝑙 ≤ 1 + 2
𝑙
∑
𝑘=1

(𝑙 ⋅ 2−2𝑛−1)𝑘 = 1 + 2𝑙 ⋅ 1 − (2−2𝑛−1 ⋅ 𝑙)𝑙
22𝑛+1 − 𝑙 .

Since 𝑙 < 2𝑛 we have (1 + 2−2𝑛)𝑙 ≤ 1 + 𝑙 ⋅ 2−2𝑛+1 < 2, and

𝜌1/𝑠(ℐ/𝑞)𝑙 ≤ 1 + 𝑙 ⋅ 2−2𝑛+1 + 2(N(ℐ)−1 ⋅ 𝑞𝑛 ⋅ 𝑠−𝑛)𝑙.
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We have

𝔼𝐴 [𝜌1/𝑠 (Λ⟂(𝐀)∗)] ≤ 1 + 𝑙 ⋅ 2−2𝑛+1 (∑
ℐ∈𝑇

|ℐ/𝑞𝑅∗|𝑘−𝑙) + 2𝑠−𝑛𝑙 ∑
ℐ∈𝑇

(𝑞𝑛 ⋅ N(ℐ)−1)𝑙
|ℐ/𝑞𝑅∗|𝑙−𝑘 .

Notice that

|ℐ/𝑞𝑅∗| = 𝑑(𝑞𝑅∗)
𝑑(ℐ) = 𝑞𝑛

√|Δ𝐾𝑚 | ⋅ 𝑑(ℐ)
= 𝑞𝑛 ⋅ 𝑑(ℐ)−1

√|Δ𝐾𝑚 |
= 𝑞𝑛 ⋅ N(ℐ∗) = N(𝑞ℐ∗).

Since 𝑞𝑅∗ ⊆ ℐ ⊆ 𝑅∗, by Lemma 11, 𝑅 ⊆ ℐ∗ ⊆ 𝑅/𝑞, hence 𝑞𝑅 ⊆ 𝑞ℐ∗ ⊆ 𝑅. We see that 𝑞ℐ∗ is an ideal and is a factor
of ⟨𝑞⟩. We also have

𝑞𝑛 ⋅ N(ℐ)−1 = 𝑞𝑛 ⋅ √
|Δ𝐾𝑚 |
𝑑(ℐ) = 𝑑(𝑞ℐ∗) ⋅ √|Δ𝐾𝑚 | = N(𝑞ℐ∗) ⋅ |Δ𝐾𝑚 |.

Therefore
(𝑞𝑛 ⋅ N(ℐ)−1)𝑙
|ℐ/𝑞𝑅∗|𝑙−𝑘 = |Δ𝐾𝑚 |𝑙 ⋅ N(𝑞ℐ∗)𝑘 ≤ 𝑛𝑛𝑙 ⋅ N(𝑞ℐ∗)𝑘.

Let 𝑆 be the set of ideals that are factors of ⟨𝑞⟩. We first claim that

∑
ℐ∈𝑇

|ℐ/𝑞𝑅∗|𝑘−𝑙 ≤ 1 + |𝑆| − 1
2𝑙−𝑘 ≤ 1 + 𝑞2𝑛

2𝑙−𝑘 ,

so the first sum becomes negligible as 𝑙 increases. Notice that 𝑘 = 𝑙 then the sum is equal to |𝑆|. Thus we begin by
estimating the value of |𝑆|.

If 𝑞 = 𝑞1𝑞2 where 𝑞1, 𝑞2 are two coprime integers, then ⟨𝑞1⟩, ⟨𝑞2⟩ are also coprime. Let 𝑆1, 𝑆2 be the set of factors of
⟨𝑞1⟩, ⟨𝑞2⟩ respectively. We have |𝑆| = |𝑆1| ⋅ |𝑆2|. In fact we more generally have

∑
ℐ|⟨𝑞⟩

N(ℐ)𝑘 = ( ∑
ℐ|⟨𝑞1⟩

N(ℐ)𝑘)( ∑
ℐ|⟨𝑞2⟩

N(ℐ)𝑘) .

Therefore it sufficies to consider the case where 𝑞 is a prime power. Let 𝑞 = 𝑝𝑡. By Lemma 93, ⟨𝑞⟩ factors as

⟨𝑝⟩ = 𝔭𝑡ℎ1 ⋯𝔭𝑡ℎ𝑑

where 𝑟𝑝 is the largest integer such that 𝑝𝑟𝑝 divides𝑚, 𝑓𝑝 is the multiplicative order of 𝑝modulo𝑚/𝑝𝑟𝑝 , ℎ = 𝜑(𝑝𝑟𝑝),
and 𝑑 = 𝑛/ℎ𝑓. Hence |𝑆| = (𝑡ℎ + 1)𝑑 ≤ (2𝑡ℎ)𝑑. Notice that ℎ𝑑 ≤ 𝑛. Let 𝑓(𝑥) = (2𝑡𝑥)𝑛/𝑥. This function reaches its
maximum when 2𝑡𝑥 = 𝑒. Therefore |𝑆| ≤ exp(2𝑡𝑛/𝑒) ≤ 𝑞2𝑛. The second inequality is because exp(1/𝑒) ≈ 1.44 < 𝑝,
and 𝑞 = 𝑝𝑘.

Among the elements of 𝑆 there is one special element, namely 𝑅 itself. We have N(𝑅) = 1, and 1𝑘−𝑙 = 1 regardless
of 𝑘 and 𝑙. Except this special element, all other elements have N(ℐ) ≥ 2, and so N(ℐ)𝑘−𝑙 ≤ 2𝑘−𝑙. Together we get

∑
ℐ∈𝑇

|ℐ/𝑞𝑅∗|𝑘−𝑙 ≤ 1 + 𝑞2𝑛
2𝑙−𝑘 .

To bound the second sum, notice that

2𝑠−𝑛𝑙 ∑
ℐ∈𝑇

(𝑞𝑛 ⋅ N(ℐ)−1)𝑙
|ℐ/𝑞𝑅∗|𝑙−𝑘 ≤ 2(𝑠/𝑛)−𝑛𝑙 ∑

ℐ∈𝑆
N(ℐ)𝑘.
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And we have

∑
ℐ∈𝑆

N(ℐ)𝑘 =
𝑑
∏
𝑖=1

(1 + N(𝔭𝑖)𝑘 +⋯+N(𝔭𝑖)𝑡ℎ𝑘)

= (1 + 𝑝𝑓𝑝𝑘 +⋯+ 𝑝𝑓𝑝𝑡ℎ𝑘)
𝑑

≤ 𝑝𝑓𝑝𝑡ℎ𝑘𝑑(1 − 𝑝−𝑓𝑝𝑘)−𝑑

≤ 𝑞𝑛𝑘 exp(𝑑 ⋅ 𝑝−𝑓𝑝𝑘). (𝑓𝑝ℎ𝑑 = 𝑛, 𝑝𝑡 = 𝑞)

Finally, we have 𝑝𝑓𝑝 ≥ 𝑚/𝑝𝑟𝑝 and 𝑔 ≤ 𝑛/𝜑(𝑝𝑟𝑝) = 𝜑(𝑚/𝑝𝑟𝑝), so 𝑔 ⋅ 𝑝−𝑓𝑝𝑘 ≤ 1, and the sum is bounded.

To conclude, what we have proven is that, with a uniformly random 𝐀, we have

𝔼𝐴 [𝜌1/𝑠 (Λ⟂(𝐀)∗)] ≤ 1 + 𝑙 ⋅ 2−2𝑛+1(1 + 𝑞2𝑛/2𝑙−𝑘) + 2(𝑠/𝑛)−𝑛𝑙𝑞𝑘𝑛+2.

And so with suitably large 𝑙 and 𝑠, 𝜌1/𝑠 (Λ⟂(𝐀)∗ ⧵ {𝟎}) becomes negligible. Thus the probabilitiy distribution of

𝐀𝐬 + 𝐞 mod 𝑅𝑞

where 𝐬 ∈ 𝑅[𝑙−𝑘]𝑞 , 𝐞 ∈ 𝑅[𝑘]𝑞 , is close to uniformly random.
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