Regularity Lemma 1

Lyubashevsky’s Regularity Lemma

In this blogpost we exposit a result from Lyubashevsky et al| (2013) called the “regularity lemma” for Ring-LWE. Let
m be an integer with m > 3. Let K be the m-th cyclotomic field. The field K can be either represented as Q[ X]/®(X)
where ®(X) is the m-th cyclotomic polynomial, or as Q(¢) where ¢ is a root of ®(X). The extension degree of K is
n = p(m)where ¢(m) is the Euler totient function. Let R be the ring of algebraic integers in K. For cyclotomic fields,
it is known that R = Z[{] where ¢ is a root of ®(X). As such, we use polynomials in Z[{] to represent elements of
R. Let q be an integer with g > 2. We use R to denote the quotient ring R/qR. We represent elements of R, with
polynomials that, when seen as coefficient vectors, have each component within [0, g — 1]. Thus R, is a finite set of
size q".

An informal, simplified statement of the regularity lemma is as follows. Let [ be a positive integer with [ < 2". Let
D be a probability distribution over R,. For suitable choices of D, if we sample ay, ---, a;_; uniformly from R, and
sample by, by, ---, b;_; according to D from R, then the distribution of

-1
bo + Z aibi

i=1

is close to the uniform distribution over R,. Thislemma is used to prove that the public keys of certain cryptographic
systems are indistinguishable from random. In such systems one typically samples a vector a = (a,, ---, @;_;) with
uniform randomness, samples s = (s;, -*-, §;_1) and e according to some predefined distribution D, and publishes
a,(a,s) + e as a public key.

1 Lattices

Definition 1. Let n be a positive integer. Let vy, ---, v,, be linearly independent vectors in R". The set
L={kwv,+ - +k,wv, |k .k, €2}

is called a lattice. The set {vy, ---,Vv,} is called a basis of L.

Example 2. The set of integer vectors Z" forms a lattice, with basis {e;, --- , e, }.

Remark 3. The basis of a lattice is not unique. For example, we can negate the sign of any element in the basis, and
the resulting set is still a basis.

Definition 4. If L is a lattice with basis vy, -+, v,,, then we define the determinant of L, denoted by d(L), to be

d(L) =det[v; - v,].

Remark 5. The determinant of a lattice L is well-defined up to sign. If vy, ---, v, and wy, --- , w,, are two bases for
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L, then we can represent each w; as

n
Ww; = Z kijVj’ kl] e’Z.
j=1

Similarly, we have

n
_ ' '
j=1

Now consider the matrices

T kin - ki no ki
V=[v, = v,], W=[w;, « w,|, A=|: =~ ], B=[: =~

knl knn ;'11 k;m
We have W = AVandV = BW, so detW = detA - detV,detV = detB - det W. Thus detA - detB = 1. But

both det A, det B are integers, since each entry of A, B is an integer. Therefore, both det A = +1,detB = +1, and
detW = *+detV. O

Definition 6. Let L be a lattice of rank n. The dual lattice of L, denoted by L*, is the set

L'={weR"|VveL, (v,w) e Z}.

Remark 7. Suppose that vy, ---, v, is a basis of L. To see that the dual lattice of L is also a lattice of rank n, notice
that we can find wy, --+, w,,, such that

1 (i=}))
0 (i#))

Then it is easy to see that wy, ---, w,, is a basis of L*. ]

(Wi, V;) ={

Lemma 8. Lattice duality is an involution. For each lattice L we have (L*)* = L.

Proof: Let vy, -+, Vv, be a basis of L, and wy, --- , w,, be a basis of L* as constructed above. Then it is easy to see that
v; € (L*)*, thus L C (L*)*. Now suppose Vv is a vector in (L*)*. We can write vasv = r;vy + --- + ,v,, with r; € R.
Then we have (v, w;) = r;. But since w; € L*, we haver; € Z. Hence v € L. O

Lemma 9. If L is a lattice then d(L) = 1/d(L").

Proof: Letvy, ---,Vv, be abasis of L, and wy, ---, w,, be a basis of L* as constructed in Remark [ﬂ Define the matrices

.
V=[v;  v,], W=[w; - wy]

Then we have WV = I,,. Hence d(L) = detV = 1/ detW = 1/d(L*). O

Lemma 10. Let L, L' be two lattices of rank n with ' C L. Define an equivalence relation v <> v’ on L determined
by
vevz=v-v el.

Then the number of equivalence classes of this relation is exactly |d(L")/d(L)|. Furthermore, for each v € L, we
have [d(L')/d(L)|v € L.

Proof: Without loss of generality, we may assume L = Z". Let vy, ---,V,, be abasis of L'. Let V = [vl Vn]. For
anyv € 7" v € L ifand only if V-lv € 7",
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Now recall that every matrix in Z"*" has a Smith normal form. There exists matrices S, A, T with the following
properties:

1. S,A, T € 7",

2. S—l T—l = ann.

3. V = SAT;

4. Matrix A is diagonal.

Since the matrices S, T and their inverses all contain only integer entires, we must have detS = *1,detT = *1.
Let a;, -+, a, be the diagonal entries of A. Then we have |det V| = |a; -+ a,|. Now V™! = T~1A~1S~L. For a given
vector v € Z",let w = S™lv. Then it is easy to see that V-1v € Z" if and only if each w; is a multiple of a;. Hence,
v & V' iff w; = w; mod a;, w, = w), mod a,, etc. From this it is easy to see that the number of equivalence classes
is at most | det V|. To see that it is exactly | det V|, note that for each w € Z" we have w = S~!}(Sw), and so every
equivalence class has at least one member.

For any given v € Z", every component of |[d(L")/d(L)| v is a multiple of |d(L")/d(L)|, hence a multiple of a;, -+, a,,.
Hence V=1(|d(L)/d(L)| v) € Z" and |d(L')/d(L)|v € L. O

Lemma 11. If L;, L, are two lattices such that L; C L,, then L} C Lj.
Proof: If w is a vector such that (w,v) € Z for any v € L,, then also (w,v) € Zforanyv € L,. O

Lemma 12 (Minkowski’s Theorem). Let L be a lattice of rank n. Let V be a centrally symmetric convex subset of
R"™. If vol(V) > 2" - |d(L)| then V contains at least one non-zero vector in L.

Proof: Jarvig (2014, Theorem 7.8, p. 152). ]

2 Harmonic Analysis

Let f(x) be a continuous function R" ~ C, such that [, |f(x)| dx converges. Let S be a countable subset of R"
such that » ¢ | f(x)| also converges. We can define a generalized function x(x) on R" as

ux) = Y, f(xo)8(x — xq),

Xoes
where §(x) is Dirac’s delta function.

Definition 13 (Fourier transform for continuous functions over R"). The Fourier transform of f(x) is a function
f(y) defined as

fly = [ emo sy ax
R7

Definition 14 (Fourier transform for discrete sums over S). The Fourier transform of u(x) is a function u(y) :
R" — C, defined as

Ay) = Y. &Y f(x).

xeS

In this section we follow Grafakos (2014) to establish Poisson’s summation formula:
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Theorem 15. If there exists C,d € Rwith C > 0,6 > 0, and
Vx € R", |f(x)| < C(A + |x])~"9,

> 1fy +m)| < oo,

mezh

then for every u,y € R” we have

Z o2i(X,y) f(x) = Z o—27i{z,u) f(y +2).
xXeZN+u zezZn
2.1 Fourier Series of Periodic Functions

Let us define

Fu)= Y, ™ f(x).

xeZ"+u

We have F(u) = ji(y) with S = 7" + u. Now F(u) is periodic over Z". Ifu —u’ € Z"thenZ" +u=27" +u'.

We write T, for the n-torus R"/Z". Thus a function f(x) is defined on T" if it is defined on R” and periodic over
7". We represent each element in T” with a point in the cube [—-1/2,1/2]".

Definition 16 (Fourier series for functions periodic over Z"). The Fourier series of F(u) is a function ﬁ(m) ">
C, defined as

F(m) = f e2m{um) F(y) du.
[-1/2,1/2]n

In this subsection we prove that:

Theorem 17. If F(u), G(u) are two continuous functions T" — C, and F(m) = G(m) for every m € 7", then
F(a) = G(u) for everyu € T".

Definition 18. An approximate identity is a sequence of continuous functions ky, k,, --- : T" — R such that:
1. There exists a constant ¢ > 0 such that /., |k,(x)| dx < c for every k, in the sequence;
2. For every k, in sequence we have [}, k,,(x) dx = 1;

3. For every 0 < 8 < 1/2, let B(J) be the open ball
B(6) ={xeT"||x|| <4},

and let C(6) = T" \ B(d), then fe(a) |k, (x)] dx — 0asn — oo.

Definition 19. Let f(x), k(x) be continuous functions T" — C. Then the convolution of f and k, denoted by (f * k),
is defined as

(f+l)x) = | fx—-yk(y)dy.

Tn

Definition 20. The Fejér kernel F{(x,, ---, X,) is defined as

m m .
F]G(xl, LX) = z (1 - 1\|,_+1|1) (1 _ ]\ll—.|_1|1> Q27 (m,x)
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Lemma 21. The Fejér kernel F; satisfies

n

sin(z(N + 1)xj))2

) 1
FN(xl’ ,Xn) - (N + 1)n :]l:[l< Sin(ﬂ'xj)

Proof: Notice that

n
EN(xy, e, xp) = HFI{I(xj)'
Jj=1

So it is sufficient to prove the lemma for the case n = 1. This sum is easy to do and I shall omit the details. ]
Lemma 22. The Fejér kernels F{*, F}', --- constitute an approximate identity.

Proof: By Lemma 21 we have F}(x) > 0. Thus

/ |FR ()] dX:f Fi(x) dx.
" TN

n 1/2
/ ezm(m,x) — Hf ezﬂimjxj de.
™ j=1Y-1/2

If m; € Z \ {0} then e*™MjXj integrates to 0. Hence the only term that does not vanish in Jin Fy(X) dx is the term
with m = 0. We have

Now notice that

f |F{(x)| dx = f Fi(x) dx = 1.
Tn

Th
Therefore properties 1 and 2 in Definition @ are satisfied.
To prove property 3, first notice that | sin(z(N + 1)x)| < (N + 1)|x| and | sin(z(N + 1)x)| < 1. Therefore
2

(ﬂ(N+ 1)|x| 1 ) '

| sin(zzx)| | sin(7rx)|

1
Fi(x) < N £ in

Now we claim that, when |x| < 1/2,
1 < 7|x|/| sin(zx)| < 7/2.

By symmetry it is sufficient to prove the case x > 0. The first inequality is obvious. To prove the second inequality,

define g(x) = 7mx/ sin(zx), then
sin(x) — x cos(x)

g = sin®(x)

Define h(x) = sin(x) — x cos(x), then
h'(x) = xsin(x) >0 (|x| < 7).

Therefore h(x) > 0 and g’(x) > 0 when 0 < x < 1/2. Hence g(x) < g(1/2) = 7/2when 0 < x < 1/2.

Now we have

Fi(x) < 1 ( x| >2min(N+1 1 )2< L 7T—zmin(N+1 L)2
N = N+ 1 \|sin(7x)) ‘zlx|) TN+1 4 Twlx|)
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Thus for § > 0 we have

1 w2 dx 1
R s T | < |
»/65|x|51/z N+1 4 5<|x|<1/2 |7x|? 46%(N +1)

As N increases, the integral approaches 0.

For general Fy, given any x € [—1/2,1/2]" with ||x]| > &, at least one x; satisfies |x;| > 8/+/n. Therefore

n 1/2
F{(x) dx < f FL(x;) dx; Fl(x) dxg | < " .
fe@ " le[( Lemian ’)Q, SV TN GRS

The integral also approaches 0 as N increases. ]

Lemma 23. Let ky, k,, --- be an approximate identity. Then for every continuous function f(x) : T" — C, we have

(ky * £)(X) — f(%)| dx = 0as N = co.
™

Proof: Since [—1/2,1/2]" is a compact set, f(x) is uniformly continuous. For every € > 0, we can find § < 1/2 such

that
Vx,x' e T, |lx=X|| <= |f(x) - f(X)| <e.

Also, |f(x)| has a maximum value M. Choose a sufficiently large N, such that
f |[kny(x)| dx < min(e/M, ¢).
c(%)

Then we have

(ke f)(X) = f(x)] dx J&x=y)kn(y) dY) - f(x)] dx
"

,[n’n Tn
- f Fx = k() dy) +( Fx = Yk (y) dy) — f0o| dx
Tn B(6) [HE))
< f Fx = k() dy) _fo|+| [ fx= k) dy‘ dx
" B(S) e(5)
f Fx = ykn(y) dy) — 500l dx
B(5)

(f&x—y) = fF&)kn(y) dY‘ dx
B(3)

+

( f Fkn(y) dy) _fe0+
n B(6)

f FEOkn(Y) dy) ) (F(x—y) = FOkn(y) dy‘ dx.
B(5)

B(5)

Because [}, ky(y) dy = 1, we have

f kn(y) dy = 1 — f kn(y) dy.
B(5) c(9)
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But | fo(s) kn(y) dyl < Je(s) lkn(¥)I dy < €, s0

l—ssf kn(y)dy <1+e.
B(5)

We have

‘( F@kn(y) dy) —f®)| < |f(x)]| < M.
B(6)

Similarly

(fx—y) = f®)kn(y) dy| <& (c - o),
B(5)

where c is the constant in requirement 1 of Definition @ Together we get

(ky + )X) = fX)|dx <e-(1+c+M—e)
Tn

Ase — 0, we see that [}, |(ky * f)(X) — f(x)| dx — 0. O

Lemma 24. Let F(x) be a continuous function on T". For each x € T" we have

Fane= 3 (1- A',”'j:'1>-.-(1 1\|TW-1|-1|1> F(em) 2ritm),

|mj|<N

Proof:
|| LTRSS i(
n = _ w1 = L) p27mi{myy) —
(B # F)(%) fT 5 (1 gl (1 gl ) e pix—y) ay
meZ
Imj|<N
|m1|> ( |m1|)f 271i
= 1- (1= 2mimy) f(x —y) dy
m;,,( N+1 N+1) J.
|mj|<N
_ |m; | ) ( ) p27i{m,x—y)
- 3 (- ) (- f(y) dy
meZ
— Z (1_ |Wl1|> (1 1| )ezm(mx)f 27Ti<—m,y>f(y) dy
. N +1 N+1
meZ
|mj|<N
24 ) e
= 1- 1- F(—m) e?mim.x)
2 (-
|mJ'|SN

]
Proof of Theorem [17: Define H(x) = F(x) — G(x). Then H(m) = F(m) — G(m) = 0. Hence (F{ * H)(x) = 0 for
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every x € T". By Lemma @ we have
f |(Fy * H)(x) — H(x)| dx — 0.
T

We conclude that H(x) = 0, thus F(x) = G(x).
We also get the following corollary:

Theorem 25 (Fourier inversion). If F(x) is a continuous function T" ~ C, and

>, [Fm)| < o,

mezZh

then we have
Fx)= ) F(m)e 2ritmx)

mezn

Proof: We use G(x) to denote the RHS. We have

G(m) = Z F(m') e2ritm-m'.x) gy
T" m'ezn
— Z ﬁ(m')/ eZﬂi(m—m’,x) dx|.
m’/ezn "

If m # m’ then [, e2milm-—m'.x) 4y — 0. Hence G(m) = F(m), and we may conclude F(x) = G(x).

2.2 Poisson’s Summation Formula

We now return to the function F(u) = ) e2mHXY) £(x).

xeZ"+u

Proof of Theorem @: We have

F\(m) =f e27ri(m,u>( z e27ti(x,y) f(X)) du
Th

xeZ"+u

=[ ezm(m,u>( Z e2mi(x+u,y) f(x+u)) du
Tn

xezn

Z e2milmu) 2milx+uy) £(x 4 1) du (Weierstrass M-test)
xezn JIn

Z f e2mim,(x+u)—x) p27i(x+uy) f(x 4 u) du
T

xezn

Z f e27ri(m,x+u) e271i(x+u,y) f(X + 11) du (ezm(m,x) — 1)
Tn

xezZn

Z f ezm(m+y,x+u) f(X + u) du
Tn

xezn

— f e2mi(m+y.x) f(x) dx
Rn
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= f(y + m).
By assumption we have }}  __, |IF(m)| < c0. By Theorem @ we get
F(u) = Z ﬁ(m) p2mi{m,u) _ Z o—2mi(z,u) f(y +2).
mezZn zezZn
]
2.3 General Lattices
Suppose that we want to sum not over Z" + u but over L + u where L may be any lattice of rank n. Let vy, -+, Vv,

be abasisof L. LetL = [v; -+ v,]. Define
8(x) = f(Lx),

so that we want to compute ), g(x). The Fourier transform of g(x) is

xeZ"+L-1lu

e2miXY) o(x) dx

n

8(y) =

e2mixy) £(Lx) dx

n

_ 1 27i(L™1z,y) _7-1
_detL_Lne f(z) dz x=L"2)

T

_ 1 27i(z, L~ Ty)
= dethRne f(z) dz

_jaTy
detL °

Hence, by Theorem @ we get

Z e2mi(x,y) f(x) = Z e2mi(Lx,y) g(x)

XEL+u xXeZn+L-1u
— Z eZﬂi(x,LTy> g(X)
XeZn+L-lu
Z ezm(z,L‘lu) g(LTy +72)
zezn
_ 1
~ detL

1 . ~
33 Z eZm(z,u) f(y+Z)

LTzezn

Z e27ri(L‘Tz,u) f(L_T(LTy+Z))

zeZn

It is not hard to see that the vectors z € R" satisfying L'z € Z" are precisely the vectors in L*. Therefore

Z 2Ti%Y) f(x) = ﬁ z p2mi{z,u) f(y + z).

xeL+u zeL*
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2.4 Positive-definite Functions
We additionally need the following result:

Definition 26. A continuous function f(x) : R" — C is called positive-definite, if f(x) = f(—x), and for every
&y, ¢ € C and every x4, -+-, X € R" we have

> gi?jf(xi —x;) > 0.

1<i,j<k

Theorem 27. If f(x) € R and f(x) > 0 for every x € R", then f(y) is a positive-definite function.

Proof: The Fourier transform of any function f(x) satisfies f(—x) = f(x). For any X,y;,-+,yx € R" and any
$1, -+ Sk € C, define ¢, = ¢, e2m%Yp) and we have

> shemoris % ano( 3 o) 3 6)ze

1<p,q<k 1<p,q<k

Hence

Y tLfyi-yp= Y o4 f YY) £(x) dx
RR

1<p,q<k 1<p,q<k
= f f(x)- Z gpgeml'(x,yp—y@ dx
R" 1<p,q<k
> 0.

3 A Lemma of Banaszczyk

Let X be a symmetric positive definite matrix in R”*". The Gaussian distribution 2 on R" with covariance X is a
continuous distribution with density
ex (—1 Tx-1 )

p(—3% X

2m)n/2 . detx

If L is a lattice on R" then L is a discrete set, so we cannot impose the continuous Gaussian distribution onto L.
Instead, Micciancio and Regev (2004) suggest to use the discrete Gaussian measure

D(x) =

exp(—x "2 1x)
exp(—xTZ-1x)’

px(X) = >

xelL

from which they derived elegant security properties. In this section we prove a lemma from Banaszczyk (1993),
which sets the foundation for the analysis of discrete Gaussian distributions.
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3.1 Fourier Transform of Gaussian Functions

o0
2
/ e~ =4/7x/a.
—0o0

Proof: Simon (2015, Theorem 4.11.11, p. 286). ]

Lemma 28. For any a > 0 we have

Lemma 29. For any a > 0, the Fourier transform of f(x) = e=ax? jg
fo) =r/ae Ve,
Proof:

(6 9)
o) = [ ot ax

_ —ax g (CDFQ@rxy)

= /: ) [e Z 20! dx
© [(_a-22Yk [

Sl o]

Define f(x) = e—ax? x2k, Integrating by parts gives us

/fn(x) dx = =@ x2k+1 fx 79 (2k x2k=1 — 2q x2k+1) dx

— g—ax? y2k+1 _ anfk(x) dx + 2affk+1(x) dx.

_ 2
As X — oo we have e~ x2k+1 _, (. Therefore

/ S (x) dx = 2k2-(|1_ ! / fr(x) dx.

We conclude that

f fr(x) dx = (2](62 )i)”\/ﬂ/a.

Now we have

R © [ 4, 2 9\k [ ,
fo=3 % f a2k dxl

k=0

_ i (—4m?y?)k (k=111 Jia
k=0

(2k)! (2a)k
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_\/FZ (=27%*/a)"

e T

_Wz( ~2ny fa)

2k - k!

n/ae‘” y*la,

O

Theorem 30. For any symmetric positive definite matrix X, the Fourier transform of f(x) = exp(—x'Z~!x) is
fly) = V7rn - detZ exp(—72y T Zy).

Proof: Since X is symmetric and positive definite, there exists an orthonormal basis vy, ---, v, and positive real
numbers 4, ---, 4, such that

n
Y= Z AkaVII’ z-1 Z vkvk, detX = H Ak
k=1 k=1

We now express everything in the {v;} basis. For example, y; = (y, vi). We have
fiyr= [ ey s
Rn
n (6]
— Hf e2TiXk Yk e—xi//lk dxy
k=1Y-c0

n
= H V- A e MYk
k=1
=V 7" - det2 exp(—72y'Zy).

3.2 Banaszczyk’s Lemma

Let L be alattice of rank n. If we impose a discrete Gaussian distribution 2 onto L, and sample points of L according
to D, then the points most likely to be chosen should be points that are close to the origin. In this subsection, we
prove alemma from Banaszczyk (1993) that analytically bounds the probability of getting points that are “far” from
the origin. For the remainder of this blogpost, when S is a countable subset of R” and s is a positive real number,
we write

p(S) = 3 eI,

xeS

py(S) = 3 eI,

xeS
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Lemma 31. For any a > 0 and u,y € R" we have
Z eZﬂi(x,y) e—a||x||2 — Vﬂn/an Z e—27ri(z,u) e—ﬂ2||y+z||2/a.
d(L)
xXeL+u zel*
Proof: This is a straightforward consequence of Theorem @ [l
Remark 32. In Lemma El], if we sety = 0, we get
S el = VIO S o) -l
xeL+u d(L) zel*
Setting also u = 0 gives us
3 emalil? = vat/an S elklle,
xX€EL ( zeL*
Thus for any u € R" we have
S el = vzt/at 3 2itnn) gl
XEL+u d(L) zeL*
\h/an ; 2(1[12
< e—2mi(zu) ,—7*||2]*/a
d(L) ZL: | |
_ ymt/ar 3 el
) 4.
= Z e—allx|l?,
xeL
On the other hand, we also have
z e—allxll® — Z e—allx+ull?
xXeL+u xeL
1
=3 Z (e‘a||“+"”2 + e‘a”“‘x”z) (Because bothx,—x € L)
XeL
= e~allul? Z e—allx|l? cosh(2a(x,u))
X€eL
> e—allull? Z e—allx|l?,
X€EL
]

Lemma 33. For anya > 0,u € R", k € {1, ---, n}, we have

—allx|?

2
> X e
xeL+u _a”X||2 S 1/a.
ZXEL e

If u = 0 then the bound can be improved to 1/2a.
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Proof: Let f(¥) = Y crvu e~allXI? 27HxY) et £y, = 32f/3y3. Then we have

fre(y) = —47? Z xi e_a||X||2 e2mi(x,y)

xeL+u

Therefore
S 2l —f'f;kT(zO)-
XEL+u
But by Lemma El] we also have
fy) = Vah/an 3 g2tz e—2lly+zl*/a,

d(L)

zeL*

Letg(w) =Y ;. e llzl*/a p2mizu) et g\ = 32g/du?. We have

2 2 .
k(W) = —4n? ) zp e llelltla g2mitwa),
zeL*

\ 7t /at

f1(0) = WOR (—27%/a - g(—u) — 7*/a* - g (—w)),

Ze_aHX”Z \/7‘["/(1” Z —nllz|? — \/71' /an (0)

Sd@)

xeL zeL*

Combining these equations, we get

_ 2
Yersa X P gcu)  g(-w)

Y e X P~ 2a-g(0) " 4a2-g(0)

In Remark B2, we showed that g(—u) < g(0). We also have g, (0) < 0. When u = 0, this is sufficient to show that

2 o—allx||?
ZXEL Xk €
—al|x||?
Z:xeL ¢

By Theorem @, —gik 1s a positive-definite function. We have

1
< —.
- 2a

=28k (—1) = =g (—1) — gxx (1) > 2844 (0).

It is equivalent to gy (—u) < —gii(0).

In Remark @ we showed that g(u)/g(0) > e=allull® et gr = 0g/du; and notice that g,(0) = 0. It follows
that g,,(0)/g(0) > —2a, because otherwise g(u) would decrease too quickly in a neighborhood around 0 and
g(u)/g(0) > e=alull* cannot hold.
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We conclude that
Bik(—w) _  —8u(0) _ 2a _ 1

4a2-g(0) = 4a%-g(0) ~ 422~ 2a’

2 ,—allx||?
23x€L+u'xke

—al|x||2
Z:xeL e

<l+l 1
~2a 2a a

Lemma 34. For any s > 1 we have
ps(L) < 5" - p(L).

Proof: Let f(a) = pﬁ(L) = Yixel e~7IIXII*/a e have

T
fl@)=— 3 lix|Perie

X€eL

S En: x2 eIl fa
a

xeL k=1

n
T a 2
il - -7||x||*/a
= DIE DI
k=1 xeL

Therefore [log f(a)]’ < n/2a. Integrating along a gives us log[ f(a)/f(1)] < log(a) - n/2, so f(a)/f(1) < a™?. Now
ps(L)/p(L) = f(s*)/f(1) < s™. O

Lemma 35. For any s > 1 and any u € R"” we have

ps(L +u) < 25" - p(L).
Proof: Let f(a) = p, (L) = 3 ; e~mIXIP/a Lot g(a) = pya(L +u). We have

T _ 2
gl@=—3 2 IIx|Pemixe

xeL+u

-Z % Zn:xie—nuxuzm
a

xeL+u k=1

" a
had Z e=7lIx|1*/a
1 T xX€EL

_n Z e—7lIxl*/a
a

x€eL
< na”/z_lf(l).

<7T
- 12
as i

Therefore

o(@) - g() < n- f(1) f 121 4 = 2(a"? ~ 1)f(1).
1
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By Remark B2 we have g(1) < f(1). This finishes the proof. O
Lemma 36 (Banaszczyk’s Bound). For any ¢ > 1/4/27, let B(c) be the open ball
B(e) = {x e L] ||x|| < cv/n},

then we have n
p(L\ B(c))/p(L) < [c 27e e‘”cz] .

Proof: For any t € (0,1) we have

3 eI = 3 er-DlixI? gl

x€eL xeL
> Z T A=DIx[]> p—7||x]|?
xeL
[Ixl[>>c?n
> er(1-t)c’n Z e lIXI?
xeL
|Ix|[*>c*n

By Lemma @ we also have

3 eI < pnl2 3 e,

xeL xeL
Therefore
Z e TIXI?  p=n/2 p—m(1-t)c?n Z e~ TlIXI?
xeL xeL
[[x]|>>c*n

This can be written as n
p(L\ B(c))/p(L) < [t_1/2 e—ﬂ(l—t)CZ] .

Set t = 1/27¢? and we get
n
o(L\ B(e))/p(L) < [c 27e - e—ﬂcz] .

4 The Smoothing Parameter

For any lattice L, we have
:Os(L) =1+ ps(L \ {0})
For any ¢ € R", by Lemma El] we have

Z e—2mi(c.z) e—T[SZHZHZ.

zeL*

SI"L
L+¢)= —
Now suppose that p,/4(L* \ {0}) is a very small value. Then the coefficient e~27ie.2) will not have a significant effect
on the value of py(L + ¢). Formally:

s" N

109 <ps(L+c)< (1+s)d(L>.

prs(L*\{0}) <e= (1 -¢)
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Notice that the range of py(L + ¢) does not depend on c.

The significance of this inequality is as follows. If L is a sublattice of L, then we can define an equivalence relation
Vv < V' on L, determined by
vev=v-v er.

Each equivalence class of this relation can be written as L' + ¢ for some ¢ € L. Now if p,(L' + ¢) is roughly equal
to a constant for each of these equivalence classes, then we can sample points from L according to the distribution
ps(L), and the probability of getting points from each of these equivalence classes is roughly uniform. This is the
core idea behind the regularity lemma.

Now how should we set the parameter s so that the value p1,,(L* \ {0}) becomes negligible? To answer this question,
Micciancio and Regev| (2004) introduced the “smoothing parameter” and related it to other lattice properties.

Definition 37. For a given lattice L and ¢ > 0, the smallest positive real number s that satisfies

p1s(L*\{0}) < ¢
is called the smoothing parameter of L, denoted by 5.(L).
For a given lattice L, we use 4,(L) to denote the length of the shortest non-zero vector in L.
Lemma 38. If L is a lattice of rank n, and ¢ = 272", then 7.(L) < ﬁ/ll(L*).

Proof: If s > y/n/A,(L*), then the only vector v in sL* with ||v|| < 4/n is 0. Then by Lemma B6 we have
p1/s(L* \{0}) = p(sL* \ {0}) < C" - p(sL*) = C" - (1 + p(sL* \ {0}))

where C = +/27e - e " < 1/4. Therefore

n

-2
Pus(LEN{OD) < 75 <27
Ol
Lemma 39. For a given lattice L of rank n and any s > 0,¢ > 0, we have
NN
p1/s(L) < max (1, (nE(SL )> )(1 +é).
Proof: If s > 1 (L") then p,/5(L) < 1 + ¢ by the definition of n.(L*). If s < n.(L*) then let = 5(L*) and
(L) = S pi(1) < S p,(I%) = (1)) - puyy(L) < (/5" - (1 + )
Pi/s - d(L)pS d(L)pr) = Iol/n =07 .
Ol

5 Algebraic Number Theory

In Ring-LWE the lattices under study are algebraically structured. They in fact correspond to ideals in rings of
algebraic numbers. In this section we present the basic properties of these ideals. Jarvis (2014) is a good introduction
to the theory, but only covers the basics. Neukirch (1999) presents the results in greater generality, but is more
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difficult to read.

Let P(X) be a polynomial with coefficients in Q, such that P(X) is irreducible over Q. Suppose that
PX)=co+c1 X+ +c, X"
The formal derivative of P(X) is defined to be
P'(X)=cy +2c,X + - + nc, X" L.

Since P(X) is irreducible, it is coprime with its formal derivative. This is equivalent to P(X) having no repeated
roots over C. Then Q[X]/P(X) is a field, and is called a finite and separable extension of Q. Elements of Q[X]/P(X)
can be represented as polynomials in X of degree at most n — 1 and with rational coefficients. To avoid confusion,
when representing elements of K we shall use y to represent the placeholder variable of the polynomial, and leave
X,Y, --- for variables of other polynomials. We denote the field Q[X]/P(X) by K.

Definition 40. A non-zero rational polynomial m(X) is an annihilating polynomial for an elementa € K, if m(a) = 0
in K.

Remark 41. If m(X) is an annihilating polynomial for some o € K then degm > 1. If degm = 0, then m(X) = ¢
for some ¢ € Q, but m(a) = 0 so ¢ = 0. This contradicts the requirement that m(X) is non-zero.

Definition 42. A non-zero rational polynomial m(X) is monic if the leading coefficient of m(X) is 1.

Lemma 43. For each a € K, there exists a unique monic annihilating polynomial m(X) for « that has the lowest
degree among all annihilating polynomials for a. We call m(X) the minimal polynomial of a.

Proof: [arvis (2014, Lemma 2.4, p. 20). ]
Lemma 44. The minimal polynomial of any a € K is irreducible.
Proof: [arvis (2014, Lemma 2.6, p. 20). ]

Lemma 45. If m(X) is an annihilating polynomial of some a € K, then it is a multiple of the minimal polynomial
of a.

Proof: Jarvig (2014, Lemma 2.7, p. 21). |

Definition 46. An element o € K is called an algebraic integer if the minimal polynomial of « has only integer
coefficients.

Lemma47. Anelement a € K is an algebraic integer iff it is the root of a monic polynomial with integer coefficients
(not necessarily minimal).

Proof: Jarvis (2014, Lemma 2.22, p. 29). Suppose that m’(X) is a monic polynomial with integer coefficients such
that m'(a) = 0. Then m’(X) is a multiple of the minimal polynomial m(X) of «, so we can write m'(X) = m(X)-g(X).
Since m(X) and m'(X) are monic, so is g(X). Suppose that some coefficients of m(X) and g(X) are not integers. Let
a be the least common multiple (LCM) of the denominators of non-zero coefficients in m(X). Let b be the LCM
of the denominators of non-zero coefficients in g(X). Then the polynomials am(X) and bg(X) have only integer
coefficients.

The greatest common divisor (GCD) of the non-zero coefficients of am(X) must be 1. Since m(X) is monic, the
leading coefficient of am(X) is just a. If a > 1, let p be a prime factor of @, and let k be the highest integer such that
p¥ divides a. Then at least one non-zero coefficient ¢ of m(X) has a denominator that is a multiple of p¥, and the
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numerator of that coefficient is not a multiple of p. We see that ac cannot be a multiple of p. Similarly, the GCD of
the non-zero coefficients of bg(X) must be 1.

The GCD of the non-zero coefficients of am(X) - bg(X) must be 1. If this is not the case, let p be a prime factor of the
GCD. Suppose that
amX) =my+mX + - +mX", bgX)=go+g X+ +gX5
r+s i
am(X) - bg(X) = Z Z mjg;_;iX".

i=0 j=0
Since the GCD of the non-zero coefficients of am(X) is 1, not all coefficients of am(X) are multiples of p. Let m, X"
be the highest term of am(X) that is not a multiple of p. Similarly, let g,X" be the highest term of bg(X) that is not
a multiple of p. Consider the coefficient of X**V in am(X) - bg(X), which is equal to Zij:g M;gyv—j- The terms
having j < u can be dropped since m; is a multiple of p. The terms having u + v — j < v can also be dropped since
My 4y—j is @ multiple of p. The only remaining term is m,g,, which is not a multiple of p. We conclude that the
coefficient of X**V cannot be a multiple of p. This contradicts the assumption that p is a factor of every coefficient

of am(X) - bg(X).

Recall that we have assumed m'(X) = m(X) - g(X), so am(X) - bg(X) = ab - m'(X). Since m’(X) has only integer
coefficients, ab is a factor of every coefficient of am(X) - bg(X). We must have a = b = 1. Hence both m(X) and
g(X) have only integer coefficients. O

Neukirch (1999, p. 8) gives a different proof of this lemma, but Neukirch (1999) uses a different definition of alge-
braic integers, and proves that it is equivalent to Definition @

Lemma 48. For every o € K there exists an integer k such that ko is an algebraic integer.

Proof: Neukirch (1999, p. 8). [l

5.1 Algebraic Integers as a Ring

Let ay, -+, o be a finite number of elements in K. Then R = Z[«a, -+, ai ] is a subring of K. Each element in R can
be written as a finite sum of monomials

zait - o
wherez € Z,ry, -+, 7, € N. Wesay R is finitely generated, if there exists a finite number of elements w,, -+, w; € R,

such that every element in R can be written as
nwy + - + 1w

wherery, - ,r; € Z.
Theorem 49. The following three propositions are equivalent:

1. Z[ay, -+, ai] is finitely generated,;

2. The elements a4, -+, a; are all algebraic integers;

3. All elements in Z[a;, -+, ai | are algebraic integers.
Proof: Jarvis (2014, Theorem 2.25, Corollary 2.26, Proposition 2.27, pp. 31-32). Let R = Z[ay, -+-, Q|-

(3) = (2): Obvious.
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deg m;

(2) = (1): Let m;(X) be the minimal polynomial of «;. Then m;(;) = 0, and «; = (X98™i — m;(X))(«;). Notice
that deg[X9°8" —m;(X)] < deg m;. Therefore, each o} with r > deg m; can be expressed as an integral combination

i1 N . o .
of 1, i, -+, oc?eg ™~ Hence each monomial in R can be expressed as an integral combination of monomials

a;l cee a;k
withr; € {0,1, -+, deg m;—1}. There are only a finite number of such monomials. Therefore, R is finitely generated.

(1) = (3): Let wq, -+, w; be an integral basis of R. For a given a € R, the mapping f — af is linear. Suppose that
for each w; we have

l
aw; = Z rijcoj.
j=1

Define the matrix
1 o
M, =|": oo
1l rll
Then for every 8 € R,if § = s;w; + -+ + §;0;, we have
51
af = (w; - w)My
S

Furthermore, if f(X) is a polynomial, then

81

fl@-B=(wr -+ o) f(My)

8]

Let F(X) be the characteristic polynomial of M, which is a monic polynomial of degree [ with integer coefficients.
It is known the characteristic polynomial of a matrix is an annihilating polynomial of that matrix (Caylay-Hamilton
theorem). Hence F(a) = 0, and « is an algebraic integer by Lemma @ O

Theorem 50. The set of algebraic integers forms a subring of K.

Proof: If a, 8 are two algebraic integers in K, then a + §,af € Z|a, 3], and they are both algebraic integers by
Theorem 9. [

5.2 Extension Field as a Vector Space

The field K can be seen as an n-dimensional vector space over @, and {1,7, 2, ---,7" !} is a basis for this vector
space. In this section we analyze the structure of bases for this vector space.

Lemma 51. The minimal polynomial of any « € K has degree at most n.

Proof: The vectors corresponding to 1, a, a?,---,a" cannot be linearly independent, since the dimension of the
vector space is n. Hence we can express 0 as a non-trivial linear combination of 1, «, ---, &' ]

For a given a € K, let m(X) be the minimal polynomial of ¢ and let ¥ = deg m(X). If r = 1 then « € Q and we ignore
this case. The vectors corresponding to 1,a, -+, a’ ! are linearly independent and span a subspace of K. They do
not span the full space unless r = n. Let f(X) be a polynomial of degree at most r — 1. As m(X) is irreducible, we
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can find polynomials g(X), h(X) such that f(X) - g(X) = m(X) - h(X) + 1. Then f(«) - g(x) = 1. As such, the inverse
of any element spanned by 1,a, ---,a’~! is also spanned by 1,a, ---,a’~!. The elements that can be written as a

polynomial in « form a subfield of K. We denote this field by Q(«).

Let 8 be an element of K not in Q(«). We claim that 1,a, ---,a" 1, 8,ap, ---, &’ "' 8 are linearly independent. If this
is not the case, we express 0 as a non-trivial linear combination of these elements. The combination must involve
at least one of j3,---,a" 13, since 1,---,a"~! are linearly independent. Then we can factor out 3 and write the

combination as
G(a)

F(a)’
where F(X), G(X) are polynomials of degree at most » — 1. This means f3 is already in Q(«).

B-Fla)=Gl@)= =

Now let k be the least positive integer such that the vectors

1, ...,ar—l,ﬁ, ...,ar—llg, ,5k, ,ar—lﬁk

are linearly dependent. We have just shown that k > 2. We claim that the set of linearly independent vectors

S — {]_’ ’ar_l,ﬁ’ ,ar_l‘g’ ’ﬁk_l’ ’ar_lﬁk_l}

spans a larger subfield of K. Since adding 8%, ---,a"~18%~! causes the set to become linearly dependent, we can
factor out 8¥ and write

Bk - F(a) = G(a,B) = 8o+ 818 + - + g1 S5

where g, -+, 8k—1 € Q(a). Then we have

k 8o &1 gk 1 gk-1
= Fw T F@ T R

where each of the fractions is in Q(«r) and the sum can be expressed as a linear combination of elements in S. We
may call the polynomial
8k=1 k-1 _ .. _ _80
F(a) F(a)
the minimal polynomial of 8 over Q(«). It is not the same thing as the minimal polynomial of 8 (over Q), since we
are allowing coefficients in Q(a).

mg(X) = X* —

A simple corollary of the above result is that each 39 with ¢ > k can be expressed as a linear combination of
elements in S. We now look at how to express the inverse elements. Let mg(X) be the minimal polynomial of 3
over Q(a), as defined above, and let k = deg mg(X). Then mg(X) is irreducible over Q(«), otherwise mg(X) would
not be minimal. Since Q(«) is a field, we can do polynomial long division in Q(«). Thus for each polynomial F(X) of
degree at most k — 1 and with coefficients in Q(a), we can find polynomials G(X), H(X) (with coefficients in Q(c))
such that F(X) - G(X) = mg(X) - H(X) + 1. This implies G(8) = 1/F(g).

We have thus constructed a new subfield Q(«, §) of K. It is strictly larger than Q(a) because § & Q(a). If Q(a, B) #
K, then we can repeat the above construction to construct further larger subfields of K. Notice that the basis of
Q(a, B) (as a vector space over Q) contains rk elements, which is a multiple of 7. If one repeats the above construc-
tion to construct another subfield Q(a, 3, 6), then the basis of Q(a, 3, §) (as a vector space over Q) would contain
rkt elements for some positive integer ¢ > 2. This leads us to the following lemma:

Lemma 52. If m(X) is the minimal polynomial of some a € K, then deg m is a factor of n.

Proof: Starting from the subfield Q(x), repeat the subfield extension procedure described above until Q(a, 3, ---) =
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K. Then the basis of Q(«a, 3, --+) (as a vector space over Q) contains d - deg m elements, where d is some positive
integer. But {1,7, ---,y" '} is also a basis of K, so d - deg m = n, and deg m is a factor of . O

5.3 The Canonical Basis

Since P(X) is irreducible over Q, there exists n distinct roots yy, ---, ¥, of P(X) in C. Each root y; induces an embed-
ding o; of K into C, by having o;(y) = y;. It is easy to see that these are all the possible embeddings of K into C,
since y must be mapped to a root of P(X).

Consider the matrix

1y oyt
|t e o
n.—l

1y, v

We see that M is a Vandermonde matrix, and

detM= J[ @;—r)#o0.

1<i<j<n

Thus the vectors v; = (y1, -+, 7}) form a basis of C". We call {v;} the canonical basis of K in C".

Suppose that we embed K as a vector space into C", by mapping y* to v; in the canonical basis. Then the image of «

5
is [al(oc) an(oc)] . If F(X) is a rational polynomial, then the image of F(y) is (F(y;), :*- , F(¥y)). From this we
see that:

Lemma 53. For any rational polynomial F(X), F(y) = 0 in K iff F(c(y)) = 0 for every embedding ¢ of K into C. []

5.4 Norms and Traces

For each a € K, the mapping x — ax is a linear transformation on the vector space K, and can be represented by a
matrix M, € Q™" If a« # 0 then M, is invertible, since the mapping x — ax has an inverse x — a~'x. We denote
the determinant of this mapping by N(«), and its trace by T(«). It is well-known that characteristic polynomials,
determinants, and traces do not depend on the basis used for representation.

Let m(X) be the minimal polynomial of a. We suppose that
mX)=X"+c,_1 X1+ +c.
In Lemma 52 we showed that deg m(X) is a factor of n. Let r = deg m(X) and d = n/r. Find a basis of K of the form
S={La, -, a By, Bra, -, B o Basy, Baat -+, B

The matrix M, under this basis consists of d blocks along the diagonal, each having the form

00 - 0 —co
10 - 0 —¢
01 0 —c,
00 - 1 —¢,;

Matrices of this form are called companion matrices. The characteristic polynomial of each block is m(X). Hence
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the characteristic polynomial of M, is m(X)<. From this we get:
Lemma 54. If « € K is an algebraic integer, then both N(«) and T(«) are integers.

Proof: N(«) is (—1)" times the constant term of the characteristic polynomial f(1) of M(«), and T(«) is —1 times the
coefficient of the second-highest term of f(1). Since f(4) is a power of a polynomial with only integer coefficients,
both values are integers. O

Now consider the two subfields #; = Q(a) and ¥, = Q(a,y). It is obvious that ¥, = K. From our previous
discussion, y has a minimal polynomial G(X) over 7, and deg G(X) = n/r = d. Suppose that

GX) =X+ gg1 X + -+ gg
where g, -+, 84-1 € F7. Each g; can be written as a polynomial in a. We assume that

gi = tip 0 At T 1.

Let a;, -+, @, be the r distinct roots of m(X) in C. We make r copies G(X) and denote them by G,(X), -+, G.(X). In
G;(X), we replace a with ¢;. Then we define

H(X) = G1(X) -+ Gy(X).

It is easy to see that H(X) is a monic polynomial of degree rd = n. For each i < n, the coefficient h; of X' is

r
Osklf"’krsd .j:l
ki+---+k,=i

. . . . S N .
where g4, = 1. For given indices s;, --, S,, the coefficient of a;* --- o, in h; is
d 1 r 1 i

,
u(sy, -+, 8p) = Z Htkj,sj-

0<ky,mkp<d j=1

ki+---+k,=i
If 57, -+, s, is a permutation of sy, -+, 5,, we see that u(sy, --+,s,) = u(s}, -+, s,). This is because we can apply the
same permutation to the indices ky, -+, k,. Thus h; is a symmetric polynomial in a;, -+, «,.. By Vieta’s formulas, we

see that each A; is a rational number, and H(X) is a rational polynomial.

For each embedding ¢ of K into C we must have H(o(y)) = 0. This is because each embedding o must satisfy
P(o(y)) = 0 and f(o(y)) = o(a) where f(y) is the polynomial representation of a. As m(o(«)) = 0is a consequence
of these two equations, () must be a one of «;, -+, @, and the corresponding factor G;(X) becomes 0. Thus by
Lemma 53, H(X) is an annihilating polynomial of y. Since deg H(X) = n, it must be identical to P(X).

What we have shown above is that, the n roots of P(X) in C can be classified into r groups. Each group contains the
d distinct roots of G;(X). For j # i, roots of G;(X) cannot be roots of G;(X), since the n roots of P(X) = H(X) are
distinct. Now if an embedding o of K into C satisfies G;(o(y)) = 0, we must also have o(a) = «;. This is because
a(G(y)) = 0 must be true, but o(G(X)) must be one of G;(X), ---, G,(X) depending on o(a). Thus each root of
m(X) = 0 occurs with multiplicity d within o;(«), -, g, ().
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Lemma 55. Let gy, -+, 0, be the embeddings of K into C. Then for each a« € K we have

N(@) = [Jorl@, T(@) =D oxla).
k=1 k=1

Proof: Jarvis (2014, Proposition 3.16, p. 47). Simply check that g;(«), -+, 0,(«) are exactly the roots of the charac-
teristic polynomial of M,,. O

5.5 Algebraic Integers as a Lattice

Via the canonical basis we can embed K as a vector space into C". However, such a representation is not yet
compatible with our notion of lattice, because we need a representation in R”. This issue can be resolved as follows.
Let y;, -, ¥, be the n roots of P(X). Suppose that there are s real roots and ¢t complex roots. Since the coefficients
of P(X) are real, the complex roots always appear in conjugate pairs. Therefore we may assume y;, -+, ¥, € R, and
Ys+k = Yn+1—k- Then for every a € K we have oy, (o) = 0,,1_r(a). We can thus represent « by the vector

Ul@)

5,()
Re(og41(a)) + Im(og4q(a))
Re(0y41(a)) - Im(0y41(a))

Re(Gy41/2(@)) + IM(Gy41/2(@))
Re(o's+t/2 (o)) — Im(o's+t/2(a))

Notice that we are only taking the first /2 complex embeddings. However, each complex embedding is split into
two components, so in total we still have n components. This embedding of K into R" is equivalent as an inner
product space to the embedding into C". Recall that the standard inner product on C" is

n
(z,2') = Z Z;Z;.
k=1

Since the embeddings are in conjugate pairs, we have

Os+1(0) 0511 (B) + Tpy1-1 (D) Tp41-k(B) = T4 () Ts 11 (B) + T4k ()T 11 (B)
= 2[Re(0y4 1 (a))Re(041(B)) + Im(ag k() Im(0y4 1 (8))]-

So in C" the inner product is
t/2

(@B) =D 0@ (B) = D, o(@)ai(B) + 2 D, Re(0g i (@)Re(0y4(B)) + Im(0 41 () Tm(y.c(B))-
k=1 k=1 k=1

The same is true for the R” embedding. Furthermore, notice that

% % Osi(@) | _ (Re(oypi(a)) +Im(ogi(a))) % % =—i
% 2\ opik(@) — \Re(ogy 1 (@) — Im(0,4()) ) % 1;1 = —i.
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So for any ay, --- , ay, if ; is the embedding of o in C" and «; is its embedding in R" then
|det[o; -+ @] =|det[a) - a]|.
Now let wy, -+, w, be n elements in K. We define
o(wy) - o(wy)
M= : : , Awy, -, w,) = (det M)2.
o'n(c‘)l) O'n(c‘)n)

Notice that
(detM)? = detMM " = det T

where

tij = Y, orlw)or(w) = Y oxlww;) = T(ww)) € Q.
k=1 k=1

Thus A(w;, -+-,w,) is a real number, and |A(w;, -+, ®,)| is the square of the volume of the fundamental paral-
lelepiped of the lattice with basis wy, --- @,,, when they are embedded into R" as explained above.

Lemma 56. If w,, ---,w, are algebraic integers, then A(w;, ---,w,,) is an integer.
Proof: [arvis (2014, Corollary 3.20, p. 48). Notice that each ¢;; is an integer, by Lemma @ |:]
Let a;, -+, a, be a basis of the vector space K. By Lemma @ we may scale each «a; by an integer k;, so that each

B; = k;a; is an algebraic integer. Since sums of algebraic integers are still algebraic integers, each expression of the
form

qlﬁl + et Qnﬁn

where q;,-:-,q, € Zis an algebraic integer. However, it is not guaranteed that all algebraic integers can be ex-
pressed this way. Notice that if « is an algebraic integer, then af3; is also an algebraic integer, and so T(af;) € Z.
Each T(«f;) is a linear function of . Therefore, we can find ;, ---, §,, € K such that

1 (=)
T(S:B)) = e

0 (#))
Then it is evident that every algebraic integer can be expressed as q;6; + --- + q,,0,, but it is not guaranteed that all
such expressions are algebraic integers. Thus Zx is “sandwiched” between two lattices L, L', where L is generated
by B4,:-+, B, and L' is generated by &;, -+, 9.

We can check whether L contains all algebraic integers by checking each equivalence class of L'/L. Suppose that
we have found some a € Zg such that a ¢ L. We can still express « as a linear combination

a=np+ - +nby

but some r; will be in Q \ Z. Without loss of generality, suppose that ; € Q \ Z. Let k = |r;]. Replace §; with
a — kp;. Then

|A(B1, Bzr -5 Bl = (n = K?IABy, -+, Bl < [ABy, -+, Bn)l-

But |A(By, -+-, B,)| is always a positive integer and cannot decrease infinitely. Thus after a finite number of steps we
obtain 3y, ---, 8, € Zg such that all algebraic integers can be expressed as integral combinations of these elements.
We say 51, -+, B, is an integral basis of Z.
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If By,--+, B, and B1, -+, By, are two integral bases of Zg, then we must have |A(By, -+, Bn)| = |ABL, -+, Br)|- The
determinant is called the discriminant of Z.

5.6 Ideals

Definition 57. An ideal J of Zg is a subset of Zx such that:
1.0 e J;
2. Ifa,f €I thena+p € J;
3. IfaeJ,f € Zgthenaf € J.

Remark 58. The singleton set J = {0} is an ideal of Zg. Also, Zx is an ideal of itself. A non-zero ideal is an ideal
that contains at least one non-zero element. A proper ideal is an ideal that is a proper subset of Zg.

Definition 59. For a given a € Zg, the setJ = {aff | § € Zk}is an ideal. We call it the principal ideal generated by
a and denote it by (a).

Remark 60. For a given non-zero ideal 7, let « be any non-zero element of 7. Then a, ay, ---,ay™ ! are linearly
independent elements of J. Therefore, J is a sublattice of Zg. It is called an ideal lattice. This does not mean every
element in J can be written as « - § for some 8 € Zg. We still need to follow the procedure described earlier to find
an integral basis for J.

Definition 61. Let 7, J be two ideals of Zf.
1.9+ ={a+B|aed,B e}
2. 37 ={a1f1 + 0+ -+ B | keEN,a; € 9,8; € F}.
Remark 62. If 7, 7, K are three ideals such that J C g, then 7K C JX.

Remark 63. It is easy to see that 7JJ C J N J. In general it is not true that JJ = J N J. However, if J, J are coprime,
e J+J =2k, thendg=9nJ.

If 7+ J = Zg, then there exists x € 7,y € J such that x + y = 1. Then for everyc € INnJ wehavec =c(x +y) =
cx+cyedd.

Definition 64. An proper ideal 7 is prime if for every a, 8 € Zg,ifaf € Ithena e IV € J.

Remark 65. An alternative characterization of prime ideals (Jarvis, 2014, Lemma 5.13, p. 96) is as follows. An ideal
X is a prime ideal iff whenever 74 C K, thend C X vJ C X.

Suppose that X is prime and 7J C XK. If neither 7 C X nor J C X holds, then there exists « € 7,8 € J such that
a, B & K. However a8 € 79 and so aff € K. Because X is prime, either a € K or 8 € X, which is a contradiction.

Suppose that X is not prime. Then there exists a, 3 ¢ X such that aff € K. Then we have neither (o) C X nor
(B) C K. However we have (a)(8) = (aff) C X.

Definition 66. A proper ideal J is maximal if J is not a subset of any other proper ideal.

Remark 67. If J is an ideal and 3 € Zg then 7' = J + () is an ideal. If 8 ¢ J then 7’ is strictly larger than J. If 7
is maximal, then J’ cannot be a proper ideal, so ' = Zg and 1 € J'.

As such, if 7 is maximal, then for each § ¢ J we can find § € Zg such that 36 + a = 1 for some a € J. Note that
this implies § ¢ J. Otherwise, 1 € J and J = Zg. This is usually formulated as: if 7 is maximal then Zg/J is a field.
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Conversely, if Zg /7 is a field, i.e. for each 8 ¢ J there exists § € Zg such that 6 + a = 1 for some o € J, then any
ideal J' that is strictly larger than J must contain 1 and so J’ = Zg. As such J is maximal.

Remark 68. A maximal ideal is always prime. Suppose that J is maximal but not prime. Then there exists 8,6 € Zx
such that 3,6 ¢ J but 36 € J. Find 8’ such that 83’ + a = 1 for some a € J. Then 8’6 = § — ad € J, but then
d € J which is a contradiction.

The converse is not true in general. However, in algebraic number rings it is true.
Lemma 69. Every non-zero prime ideal of Zg is maximal.

Proof: [Jarvig (2014, Proposition 5.21, p. 98). Notice that every ideal J of Zx is a sublattice of Zg. By Lemma @,
Zx/J has only a finite number of equivalence classes. For a given prime ideal 7 and a ¢ J, consider the sequence
a, a2, -+-. By induction we see that each a is not in J. Eventually we can find j < k such that o/ and a* that belong
to the same equivalence class in Zx/J. Then we have /(1 — a¥=J) € 7. Since a/ ¢ 7, we must have 1 — ak=J € 7.
Thus & - a¥=J=1 = 1in Zx/J. Hence Zx/7 is a field, and J is maximal. O

Definition 70. A fractional ideal J of Zk is a subset of K such that J = «aJ is an ideal of Zg for some non-zero
a € Zxg. We may write J = J/a.

Remark 71. Fractional ideals may contain elements of K that are not in Zg. Therefore, in general they are not
ideals of Zk. Fractional ideals can be seen as lattices in the R"” space, but they are not sublattices of Z.

Remark 72. Addition and multipliation of ideals can be extended to fractional ideals in the following natural way:

Jla+3/8 =BT +ad)l(ap), Tla-J/8=737/(ap).

Lemma 73. If 7, are two ideals with J C 4, and X is a fractional ideal, then JX C JX.

Proof: Suppose that X = X'/a, then I = JK' /o and JK = JK'/a. Then it is sufficient to notice that X' C JX'.

L]
Lemma 74. If a fractional ideal J is a subset of an ideal J, then J is an ideal.
Proof: We have J C J C Zg. It is straightforward to check that 7 satisfies other requirements of an ideal. ]
Lemma 75. If J is a non-zero ideal of Zg, then
Jl'={a€eK|aJ CZ}
is a fractional ideal, and 77! = Z.
Proof: Jarvig (2014, Lemma 5.25, Lemma 5.28, Lemma 5.29, pp. 100-101). ]

Theorem 76 (Unique Factorization of Ideals). Every non-zero proper ideal of Zg can uniquely written as a product
of prime ideals of Z.

Proof: Jarvis (2014, Lemma 5.31, Theorem 5.32, p. 102). ]
Lemma 77. Let 7, be two non-zero ideals of Zg. Then J C J iff there exists an ideal X such that 7 = JX.

Proof: If § = Zx then the proposition is trivial, because every 7 satisfies J C Zg, and also satisfies J = ZgJ. Also,
if J = X then it is easy to see that J C j.
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Hence assume /J is a proper ideal and J C J. By Theorem @, J can be written as
a a
J = pll pkk
where p; are prime ideals and q; are positive integers. We shall do induction on a; + --- + a.

The base case is that J is a prime ideal. Consider the factorization of J:
b b
g = qll qkl

By Remark @ at least one factor q; is a subset of J. However, by Lemma @ q; is maximal, so q; = J and we take
X to be the other factors of J.

In the inductive case, we have § = J'p such that p is a prime ideal. The reasoning is similar to the base case. The
ideal 7 must have a prime factor equal to p. By Lemma [73, 7 C J implies 7p~! C Jp~! = J’. By Lemma [74, 7p~! is
an ideal. Now J’ has one less prime factor than 7, and the induction hypothesis applies. O

By Lemma @ J is a multiple of 7, or J divides 7, iff 7 C J. Thus ideal divisibility is equivalent to reverse contain-
ment.

Remark 78. If p is a prime ideal, then by Lemma @ we see that Zg/p is a finite field. A finite field always has a
positive characteristic p, and we must have p € p. Then we have (p) C p, so p divides (p). Conversely, if p is a
factor of (p), then (p) C p and p € p. A proper ideal cannot contain two prime numbers, otherwise 1 € p and so
p = Zk. Hence, all factors of (p) have characteristic p. This shows that, to understand the prime ideals in Z, it is
sufficient to understand how each principal ideal (p) factors in Z.

Lemma 79. Let J, J be two non-zero ideals. Suppose that
a b b
jzp‘lll...pkk, gzpll...pkk

where p; are prime ideals and a;, b; € N. Note that we allow a;, b; to be 0, so 7, J can still have distinct prime ideal
factors. The case where all exponents are 0 corresponds to Zg. Then we have

min(a,by)

7+ = prrty . py

In other words, J + J is the “greatest common denominator” of 7 and J.

Proof: Let X = p . pr,:m(a"’b") and write 7 = 7'X,J = J'X, so that 7', 7’ have no common prime ideal

factors. It is sufficient to prove that 7' + J' = Zg. If not, then 7' + J’ has a prime ideal factor q. But then 7' C
J"+ g’ C q. Similarly, g’ C q. This contradicts that 7', 7' have no common prime ideal factors. O

min(ay,by)
] .

Lemma 80. Similar to Lemma @ we also have the “least common multiple”

max(ag,by)

Ing = pp=@rty

Proof: Analogous to Lemma @ See Remark @ O

Definition 81. Let L be the lattice of algebraic integers. Let J be a non-zero ideal or fractional ideal of Zg. Let L
be the lattice associated to J. The norm of 7, denoted by N(7), is defined to be |L/L'| = |d(L")/d(L)|.

Lemma 82. For any a € Zg with a # 0 we have N({a)) = |[N(a)|.
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Proof: Jarvig (2014, Lemma 5.35, p. 104). ]

Lemma 83. For any non-zero ideal or fractional ideal J of Zg, let L be the lattice associated to 7, then |d(L)| =
N(J) - 4/|A| where A is the discriminant of Zg.

Proof: Immediate from the definition of N(7) and A. O
Lemma 84. For any two non-zero ideals or fractional ideals 7, J of Zx we have N(77) = N(J)N(J).

Proof: Jarvig (2014, Lemma 5.36, Lemma 5.37, pp. 104-105). The extension to fractional ideals is straightforward.
L

Remark 85. If p is a prime number and p is a prime ideal with p € p, then Zg/p is a finite field with characteristic
p- In this case we have N(p) = p/ for some positive integer f, and f is called the inertial degree of p.

We are now ready to state how each principal ideal (p) factors in Zg. The theorem below applies only when Zx =
Z[y]. This special case is sufficient for understanding Lyubashevsky et al! (2013). The more general case requires
the theory of the “conductor” ideal and is detailed in Conrad ([n. d.]).

Theorem 86. Recall that P(X) is the minimal polynomial of y. Since we assume Zg = Z[y], y is an algebraic integer
so P(X) contains only integer coefficients. Let p be a prime, and let P(X) be the factorization of P(X) in [

P(X) = Py(X)*1 - Py(X)%.
Then there exists distinct prime ideals py, -+, i of Zg such that
(p) =¥ P
and the inertial degree of p; is deg P;(X).
Proof: Jarvisg (2014, Proposition 5.42, p. 109). [l

Remark 87. From the factorization we see that

k
n = deg P(X) = deg P(X) = Z e; - deg P;(X).

i=1

This is true in general. See Jarvig (2014, Theorem 5.41, p. 108).

5.7 The Cyclotomic Fields

Definition 88. Let m be a positive integer. An m-th root of unity is a solution to the equation {"* = 1 in C. In fact,
¢ =e¥ikimfork =0,1,2,...

Definition 89. An m-th root of unity is primitive if ¢K # 1 for any 1 < k < m. This corresponds to ¢ = e27k/™ for k
coprime to m.

Definition 90. The m-th cyclotomic polynomial ®,,(X) is the irreducible polynomial whose roots are the m-th
primitive roots of unity:

‘I’m(X) — H (X _ e27tik/m).

k coprime to m

The degree of ®,,(X) is n = p(m).
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Let K,, = Q[X]/®,,,(X). The results we need about K,,, and Z, are:
Lemma 91. Zg = Z[{] where { is any m-th primitive root of unity.
Proof: Neukirch (1999, Proposition 10.2, p. 60). ]

Lemma 92. The discriminant of Zg, is

n
m

Ak, = ( — ) <n"

1_A[prime plm pl/(p b

Proof: Shurman ([n. d.]). L]

Lemma 93. Let p be a prime number. The factoring of principal ideal (p) in Zg, is as follows. Let r, be the largest
integer such that m is a multiple of p'?. Let J» be the smallest positive integer such that pf » =1 mod m/p'». Let
d = n/[f, - ¢(p'?)]. Then we have

(p) = (py -+ )™

for some distinct prime ideals by, -+, pg4, €ach having norm pf P,

Proof: Neukirchl (1999, Proposition 10.3, p. 61). ]

6 The Regularity Lemma

We now have all necessary background information to state and prove the regularity lemma. Let m be an integer
with m > 3 and n = gp(m). Let K be the m-th cyclotomic field, and let R = Z[{] be its ring of algebraic integers. Let
q be an integer. Let R, be the subset of R with the coefficient of each { ! within [0, g — 1]. If a, b are positive integers,
let Rl%! be the set of vectors of length a with entries in R, and Rlalx[b] pe the set of matrices of size a x b with entries
in R. Similarly, Rga] is the set of vectors of length a with entries in R, and Rga]x[b] is the set of matrices of size a X b
with entries in R,. Let Dy be a discrete Gaussian distribution on R with density

exp(—7||x[|*/s*)
erR eXp(_7T| |x| |2/S2)

Ds(x) =

where ||x|| means the length of x under the canonical embedding into R".

Let k, [ be two positive integers with k < | < 2". The regularity lemma states: let A is a matrix uniformly random
in ng]x[l_k], let A = [I;|A], let x be a vector in Rg] with each component sampled from R according to D(x) with

s>2n- qk/ 1+2/(nl) and reduced by gR, then Ax mod gR is almost uniformly random over ng].

Proof of regularity lemma: For any matrix A € R[Ik]x[l_k], let A = [I¢|A]. Define the set
AL(A) ={z € Rl | Az = 0 mod gR}.

For any z € RI! we have A(qz) = gAz = 0 mod gR. Therefore AL(A) is a lattice of rank nl. The idea of the proof is
to estimate the smoothing factor of AL(A). If s > 7.(A1(A)), then as the components of z are sampled according to
Dy, the probability of z falling into each equivalence class of RO/AL (A) should be roughly uniform. Also, since A
has full rank, the number of equivalence classes of z satisfying Az = t mod qR for each t € R([,k] should be equal.

Together, we get an almost uniform distribution of Az mod gR.
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Suppose thatz € AL(A). Letz" = [z] | z] | wherez, € RI¥ andz, € RU-*]. Then Az = z, + Az, € qR*]. Suppose
that Az = gz;. Then z; = qz; — Az,. As such, we have

|l qz; — Az
AJ_(A)_{l 3Z2 2]

Suppose that y € AY(A)*. Lety' = [y] | yJ | wherey; € R¥ly, € RII=Kl. By definition, for each z € AT(A) we
have

Z, € R[l_k],z3 € R[k]}.

_ _T
(v,2) =(y1,923 — Azy) + (Y2, Z2) = q - (Y1, Z3) — <A Y1 Zz> +(y2, %) € Z

. _ : K] LIk = Lp#yikl
First, suppose that z, = 0. This means for any z; € R*! we have (qy;,z;) € Z. Hencey, € - (R ) = -(R%)
q q
where R* is the dual lattice of R and is a fractional ideal. Next, suppose that z; = 0, then for any z, € RU=K we
—_T T
have <y2 —A vy, z2> € Z. Thereforey, — A y, € (R*)I=K]. Hence, AL(A)* can be represented as

AH(A)* = ” yi/Tq ]
Ya+A yi/q

Now each y; € (R*)X] can be uniquely written as y; = ys + ys with ys € (gR*)!¥l and y, € (R;"l)[k]. Now
[yd/q | yi +yiA/ql € R, Therefore

ys € RMH,y, € R*)IH }

AtA) = ®HI + AT(R Ikl
We now estimate the value of p, (Al (A)*) for a uniformly random A.

Bz [pl/s (AJ_(A)*)] nk(l nk(—k) Z Z P1/s ((R*) + AT )

A ve(R)Ik

_ k(ll 5 Y3 3 s lluATVIdl?
n —_—
q ue(RH)1 ve(R:)K 2

—T
w2 N % Rl K vl
O
a wy (R wye(RF) 1=K ve(R(K 7

—T
= ﬁ Z Z o~ 7s% ur+v/q||? Z Ze—ﬂs2||u2+A viqll* |
n -

1 u; e(RHK ve(Ry K] w,e(RMI-K 7

_T
Because each component of u, + A v/q varies independently during summation, we have
-k

—T
o2 [ua+A vigl? Z Z e~ 7s% lut(@v)/ql]?

we(RH)I-K 7 UER" aeRlK]

Suppose that v = (vy, .-+, Ug). Define 7, = v1R + --- + xR + qR*. It is a fractional ideal, the “greatest common
denominator” of v R, -+, VxR and qR*. We have (a,v) + qu € J.

Since vy, .-+, U € R*, we have qR* C J, C R*. Consider the quotient J,/qR*. By the definition of 7, for each
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equivalence class in J,/qR* there exists at least one a € R([Ik] such that (a, v) belongs to this class. Also, suppose

that for a given equivalence class, there exists two vectors a;,a, € R[Ik] such that (a, v) falls into this class, then
(a; — a5, V) € qR*. Hence, for any other vector a; € ng], (a3, v) and (a3 + (a; — a,) mod gR, v) must also belong
to the same equivalence class. We conclude that as a varies over ng] uniformly, (a,v) also varies over J,/qR*
uniformly. Hence we have

erluranval = 0" g0
UER* [k] - |‘7V/qR*| P1/sUv/q)-
aeRq
We see that y
I-k
o5 s ) - (eulva)

B *

We get

-k
Exloys(M@))] = 3 3 erlmvialt (Pl/s(ﬂv/q))

u; €(R)[K] ve(R})IK] | T/ qR*|

I-k
% (Jv/q)
= > pus(® >[k]+"/q)'<p.17/s/ E_*q> '
VG(RZ;)[k] |Vq |

Let T be the set of all fractional ideal J of Zg such that gR* C J C R*. This is a finite set. Let d be an integer such
that dR* is an ideal. Then qdR* C dJ, so dJ is factor of qdR*. Simply iterate through the factors of gdR* and divide
each by d. We have

I-k
s/ .
Ex s (AHA))] = Y (%) S pus (RM +v/q)
JeT q ve(rpIkl
Jy=7

If v = 0 then it is clear that J, = gR*. Conversely, suppose that 7, = qR*. Then each component v; of v satisfies
v; € qR*. However, we have v; € Ry, so v; = 0 and v = 0. Thus we can write T = {gR*} U T’ where T’ is the set of
fractional ideals J satisfying gR* C J C R*. In the special case of 7 = gqR* we have

<p1/s(ﬂ/q>>"k

T/aR"] 2 Pus(RIM +vig) = pyys(RY'TE - pyys(ROH) = pyys(R.

VE(R;;)[k]
Ty=7

So we have

(Pus(?/Q))l_k

Ex [pus (N (A))] = pus(RD' + ) 17/qR"]

JeT’

> pus (RO +v/q)

ve(ry)K
Jy=3
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We can estimate the inner summation by assuming every v # 0 with components in J satisfy J;, = J. We have

() -k

Ex [pys (AL(A))] < prysR) + D) (L*q)) (p1/s(T/q)k —1)

PN

p1s(T/Q" = p1ys(T/@)'*
|7/qR*|l_k

= Pl/s(R*)l + Z

JeT’

ST/t -1

7= |I/qR*|\-k
Z Pl/s(g/Q) -1
= |7/qR*|l -k

The value of p;/,(7/q) can be estimated as follows. By the arithmetic-geometric inequality, for any element x € J

we have
2/n

|Ix||* = Z |loi(0)? > n(H IUI(X)I) =n- [N"(x)|.
We also have |[N(x)| = N({x)) > N(J) since (x) C J. Therefore

A7) 2 \/n - NYn(g).

Scaling by 1/q gives us

Ml > YN,

The dual lattice of 7/q is q7*. By Lemma @ we have

Na-2n(q7*) < q - N7Vn(9).

By Lemma B9 we have
pys(@/g) < max (1,(N(7)~! - g - s)) (1 + 2727,
By the binomial theorem,
l
l
1+272) = y—2nk_
it

By the inequality

we get

1— (2—2n—1 A l)l
22n+1 _ ]

Q+272Ml<1+2 Z(l 27—k =1 4 2]
k=1

Sincel < 2"wehave (1 +272") <1 +1-272"*1 <2 and

pus(TIQF < 1+1-2720+1 L A(N(9)™ - ¢ - s~
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We have |
1
Ex[pus (A (A))] < 1+1-27274 (Z 17/qR* K- l) posnt 3 W NOI)

Jer jor 19/qR*|k

Notice that
d(qR*) _ q" _qt-d)!

AN flag]-d@)  fIae

Since gR* C J C R*, by Lemma [L1l, R C 7* C R/q, hence qR C q7* C R. We see that g7* is an ideal and is a factor

of (q). We also have
v/ 1Ak,

d(J)

|7/qR*| =

=q" - N(J*) = N(q7").

q" NI =q"- =d(qT%) -/ 1Ak,,| = N(@T*) - |Ak,, |-

Therefore
(q" - N(9)~™)!
|7/qR* |l—k

Let S be the set of ideals that are factors of (q). We first claim that

= |Ag, |' - N(q7*)* < n - N(q7*)k.

-1 2n
ISI-1 _, . 4

* k=1
2 VAR <14 S <14 o

JeT

so the first sum becomes negligible as [ increases. Notice that k = [ then the sum is equal to |S|. Thus we begin by
estimating the value of |S]|.

If ¢ = q:q, where q;, q, are two coprime integers, then (q; ), (q,) are also coprime. Let S;, S, be the set of factors of
(q1),{(q,) respectively. We have |S| = |S;]| - |S,|- In fact we more generally have

D N@k = ( > N(j)k>< > N(J)k).

IKq) IKqr) I(q2)

Therefore it sufficies to consider the case where q is a prime power. Let ¢ = p'. By Lemma @ (q) factors as

(py = pi* - pif

where 1, is the largest integer such that p'r divides m, Jp is the multiplicative order of p modulo m/ p'r, h = o(p'P),
and d = n/hf. Hence |S| = (th + 1)¢ < (2th)?. Notice that hd < n. Let f(x) = (2tx)™*. This function reaches its
maximum when 2tx = e. Therefore |S| < exp(2tn/e) < g*". The second inequality is because exp(1/e) ~ 1.44 < p,
and q = p*.

Among the elements of S there is one special element, namely R itself. We have N(R) = 1, and 1¥~! = 1 regardless
of k and I. Except this special element, all other elements have N(7) > 2, and so N(7)¥~! < 2k=L, Together we get

2n

q
21—k

D 1I/qRH <1+
JeT

To bound the second sum, notice that

25Nl Z (q N(f]) 1) 2(S/n)—nl Z N(g)k

JeT |‘7/ R*ll -k Jes
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And we have

d
D N@F = [ + Nk + - + N(py)™)
i=1

Jes
= (1 + pfpk + -+ pfpthk)d
< p/othkd(q _ p=Tpky=d
< q"exp(d- p~/?¥). (fhd =n,p' =q)
Finally, we have p/p > m/p" and g < n/e(p'®) = ¢(m/p™®), so g - p~/p¥ < 1, and the sum is bounded.

To conclude, what we have proven is that, with a uniformly random A, we have
Ex[p1s (AHA)*)] < 1+1- 272711 + ¢2/257K) + 2(s/n)~"gkn+2,
And so with suitably large [ and s, py/s (A*(A)* \ {0}) becomes negligible. Thus the probabilitiy distribution of

As + e mod Rq

where s € Rg _k], ecE ng], is close to uniformly random.
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